Defining parameters
Level: | \( N \) | \(=\) | \( 1488 = 2^{4} \cdot 3 \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 1488.br (of order \(10\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 93 \) |
Character field: | \(\Q(\zeta_{10})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(256\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(1488, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 72 | 12 | 60 |
Cusp forms | 24 | 4 | 20 |
Eisenstein series | 48 | 8 | 40 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 4 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(1488, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
1488.1.br.a | $4$ | $0.743$ | \(\Q(\zeta_{10})\) | $D_{5}$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(1\) | \(0\) | \(2\) | \(q-\zeta_{10}^{4}q^{3}+(\zeta_{10}+\zeta_{10}^{3})q^{7}-\zeta_{10}^{3}q^{9}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(1488, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(1488, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(93, [\chi])\)\(^{\oplus 5}\)