Defining parameters
| Level: | \( N \) | \(=\) | \( 148 = 2^{2} \cdot 37 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 148.k (of order \(9\) and degree \(6\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 37 \) |
| Character field: | \(\Q(\zeta_{9})\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(38\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(148, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 132 | 24 | 108 |
| Cusp forms | 96 | 24 | 72 |
| Eisenstein series | 36 | 0 | 36 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(148, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 148.2.k.a | $24$ | $1.182$ | None | \(0\) | \(3\) | \(-3\) | \(-9\) | ||
Decomposition of \(S_{2}^{\mathrm{old}}(148, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(148, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(37, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(74, [\chi])\)\(^{\oplus 2}\)