Properties

Label 148.2.k
Level $148$
Weight $2$
Character orbit 148.k
Rep. character $\chi_{148}(9,\cdot)$
Character field $\Q(\zeta_{9})$
Dimension $24$
Newform subspaces $1$
Sturm bound $38$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 148 = 2^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 148.k (of order \(9\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 37 \)
Character field: \(\Q(\zeta_{9})\)
Newform subspaces: \( 1 \)
Sturm bound: \(38\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(148, [\chi])\).

Total New Old
Modular forms 132 24 108
Cusp forms 96 24 72
Eisenstein series 36 0 36

Trace form

\( 24 q + 3 q^{3} - 3 q^{5} - 9 q^{7} + 3 q^{9} - 6 q^{11} + 9 q^{13} - 3 q^{15} - 3 q^{17} - 12 q^{19} + 12 q^{21} + 18 q^{23} + 15 q^{25} - 6 q^{27} - 3 q^{29} - 48 q^{31} - 27 q^{33} - 42 q^{35} - 24 q^{37}+ \cdots - 69 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(148, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
148.2.k.a 148.k 37.f $24$ $1.182$ None 148.2.k.a \(0\) \(3\) \(-3\) \(-9\) $\mathrm{SU}(2)[C_{9}]$

Decomposition of \(S_{2}^{\mathrm{old}}(148, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(148, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(37, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(74, [\chi])\)\(^{\oplus 2}\)