Properties

Label 1452.2.q
Level $1452$
Weight $2$
Character orbit 1452.q
Rep. character $\chi_{1452}(133,\cdot)$
Character field $\Q(\zeta_{11})$
Dimension $220$
Sturm bound $528$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1452.q (of order \(11\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 121 \)
Character field: \(\Q(\zeta_{11})\)
Sturm bound: \(528\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1452, [\chi])\).

Total New Old
Modular forms 2700 220 2480
Cusp forms 2580 220 2360
Eisenstein series 120 0 120

Trace form

\( 220 q - 4 q^{5} + 220 q^{9} + 22 q^{11} + 40 q^{13} + 8 q^{19} + 4 q^{21} + 4 q^{23} - 18 q^{25} + 8 q^{29} + 26 q^{31} - 2 q^{33} + 58 q^{37} + 8 q^{39} - 8 q^{41} - 8 q^{43} - 4 q^{45} + 8 q^{47} + 30 q^{49}+ \cdots + 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1452, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1452, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1452, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(121, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(242, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(363, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(484, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(726, [\chi])\)\(^{\oplus 2}\)