Properties

Label 1452.2.c
Level $1452$
Weight $2$
Character orbit 1452.c
Rep. character $\chi_{1452}(1211,\cdot)$
Character field $\Q$
Dimension $200$
Sturm bound $528$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1452.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 12 \)
Character field: \(\Q\)
Sturm bound: \(528\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1452, [\chi])\).

Total New Old
Modular forms 288 236 52
Cusp forms 240 200 40
Eisenstein series 48 36 12

Trace form

\( 200 q + 4 q^{4} + 6 q^{6} + 4 q^{10} - 14 q^{12} + 8 q^{13} - 4 q^{16} - 2 q^{18} - 8 q^{21} + 24 q^{24} - 120 q^{25} + 16 q^{28} + 6 q^{30} - 36 q^{34} + 14 q^{36} + 8 q^{37} - 24 q^{40} - 40 q^{42} - 12 q^{45}+ \cdots + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1452, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1452, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1452, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(132, [\chi])\)\(^{\oplus 2}\)