Properties

Label 1452.2.bf
Level $1452$
Weight $2$
Character orbit 1452.bf
Rep. character $\chi_{1452}(7,\cdot)$
Character field $\Q(\zeta_{110})$
Dimension $5280$
Sturm bound $528$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1452.bf (of order \(110\) and degree \(40\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 484 \)
Character field: \(\Q(\zeta_{110})\)
Sturm bound: \(528\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1452, [\chi])\).

Total New Old
Modular forms 10720 5280 5440
Cusp forms 10400 5280 5120
Eisenstein series 320 0 320

Trace form

\( 5280 q + 4 q^{4} + 1320 q^{9} - 8 q^{12} + 6 q^{14} + 16 q^{16} + 10 q^{18} + 30 q^{20} + 26 q^{22} + 30 q^{24} + 140 q^{25} + 30 q^{26} + 10 q^{28} + 20 q^{30} + 4 q^{33} + 32 q^{34} - 4 q^{36} + 48 q^{37}+ \cdots + 176 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1452, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1452, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1452, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(484, [\chi])\)\(^{\oplus 2}\)