Properties

Label 1444.2.i
Level $1444$
Weight $2$
Character orbit 1444.i
Rep. character $\chi_{1444}(245,\cdot)$
Character field $\Q(\zeta_{9})$
Dimension $168$
Sturm bound $380$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1444 = 2^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1444.i (of order \(9\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 19 \)
Character field: \(\Q(\zeta_{9})\)
Sturm bound: \(380\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1444, [\chi])\).

Total New Old
Modular forms 1320 168 1152
Cusp forms 960 168 792
Eisenstein series 360 0 360

Trace form

\( 168 q + 3 q^{3} - 6 q^{7} + 3 q^{9} - 6 q^{11} + 9 q^{13} + 15 q^{15} + 3 q^{17} + 15 q^{21} + 12 q^{23} + 18 q^{25} + 9 q^{27} - 27 q^{29} - 6 q^{31} - 48 q^{33} - 33 q^{35} + 12 q^{37} - 96 q^{39} - 3 q^{41}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1444, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1444, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1444, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(19, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(38, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(76, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(361, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(722, [\chi])\)\(^{\oplus 2}\)