Properties

Label 144.10.a
Level $144$
Weight $10$
Character orbit 144.a
Rep. character $\chi_{144}(1,\cdot)$
Character field $\Q$
Dimension $22$
Newform subspaces $18$
Sturm bound $240$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 144.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 18 \)
Sturm bound: \(240\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(144))\).

Total New Old
Modular forms 228 23 205
Cusp forms 204 22 182
Eisenstein series 24 1 23

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(56\)\(4\)\(52\)\(50\)\(4\)\(46\)\(6\)\(0\)\(6\)
\(+\)\(-\)\(-\)\(58\)\(7\)\(51\)\(52\)\(7\)\(45\)\(6\)\(0\)\(6\)
\(-\)\(+\)\(-\)\(58\)\(5\)\(53\)\(52\)\(5\)\(47\)\(6\)\(0\)\(6\)
\(-\)\(-\)\(+\)\(56\)\(7\)\(49\)\(50\)\(6\)\(44\)\(6\)\(1\)\(5\)
Plus space\(+\)\(112\)\(11\)\(101\)\(100\)\(10\)\(90\)\(12\)\(1\)\(11\)
Minus space\(-\)\(116\)\(12\)\(104\)\(104\)\(12\)\(92\)\(12\)\(0\)\(12\)

Trace form

\( 22 q - 358 q^{5} + 3428 q^{7} + 76852 q^{11} - 43080 q^{13} - 70106 q^{17} - 485588 q^{19} - 329384 q^{23} + 7763334 q^{25} - 2153934 q^{29} + 3502588 q^{31} - 13768896 q^{35} + 767668 q^{37} + 726606 q^{41}+ \cdots + 383848472 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(144))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3
144.10.a.a 144.a 1.a $1$ $74.165$ \(\Q\) None 6.10.a.a \(0\) \(0\) \(-2694\) \(3544\) $-$ $-$ $\mathrm{SU}(2)$ \(q-2694q^{5}+3544q^{7}+29580q^{11}+\cdots\)
144.10.a.b 144.a 1.a $1$ $74.165$ \(\Q\) None 8.10.a.b \(0\) \(0\) \(-1510\) \(-10248\) $+$ $-$ $\mathrm{SU}(2)$ \(q-1510q^{5}-10248q^{7}+3916q^{11}+\cdots\)
144.10.a.c 144.a 1.a $1$ $74.165$ \(\Q\) None 12.10.a.a \(0\) \(0\) \(-990\) \(-8576\) $-$ $-$ $\mathrm{SU}(2)$ \(q-990q^{5}-8576q^{7}+70596q^{11}+\cdots\)
144.10.a.d 144.a 1.a $1$ $74.165$ \(\Q\) None 2.10.a.a \(0\) \(0\) \(-870\) \(952\) $-$ $-$ $\mathrm{SU}(2)$ \(q-870q^{5}+952q^{7}-56148q^{11}+\cdots\)
144.10.a.e 144.a 1.a $1$ $74.165$ \(\Q\) None 24.10.a.a \(0\) \(0\) \(-830\) \(-672\) $+$ $-$ $\mathrm{SU}(2)$ \(q-830q^{5}-672q^{7}-73468q^{11}+\cdots\)
144.10.a.f 144.a 1.a $1$ $74.165$ \(\Q\) None 24.10.a.c \(0\) \(0\) \(-614\) \(-2184\) $+$ $-$ $\mathrm{SU}(2)$ \(q-614q^{5}-2184q^{7}+4940q^{11}+\cdots\)
144.10.a.g 144.a 1.a $1$ $74.165$ \(\Q\) None 18.10.a.b \(0\) \(0\) \(-384\) \(-5852\) $-$ $+$ $\mathrm{SU}(2)$ \(q-384q^{5}-5852q^{7}+90624q^{11}+\cdots\)
144.10.a.h 144.a 1.a $1$ $74.165$ \(\Q\) \(\Q(\sqrt{-3}) \) 9.10.a.b \(0\) \(0\) \(0\) \(12580\) $-$ $+$ $N(\mathrm{U}(1))$ \(q+12580q^{7}+118370q^{13}+976696q^{19}+\cdots\)
144.10.a.i 144.a 1.a $1$ $74.165$ \(\Q\) None 18.10.a.b \(0\) \(0\) \(384\) \(-5852\) $-$ $+$ $\mathrm{SU}(2)$ \(q+384q^{5}-5852q^{7}-90624q^{11}+\cdots\)
144.10.a.j 144.a 1.a $1$ $74.165$ \(\Q\) None 4.10.a.a \(0\) \(0\) \(666\) \(6328\) $-$ $-$ $\mathrm{SU}(2)$ \(q+666q^{5}+6328q^{7}-30420q^{11}+\cdots\)
144.10.a.k 144.a 1.a $1$ $74.165$ \(\Q\) None 24.10.a.b \(0\) \(0\) \(794\) \(5880\) $+$ $-$ $\mathrm{SU}(2)$ \(q+794q^{5}+5880q^{7}-30644q^{11}+\cdots\)
144.10.a.l 144.a 1.a $1$ $74.165$ \(\Q\) None 3.10.a.a \(0\) \(0\) \(1314\) \(4480\) $-$ $-$ $\mathrm{SU}(2)$ \(q+1314q^{5}+4480q^{7}+1476q^{11}+\cdots\)
144.10.a.m 144.a 1.a $1$ $74.165$ \(\Q\) None 3.10.a.b \(0\) \(0\) \(1530\) \(-9128\) $-$ $-$ $\mathrm{SU}(2)$ \(q+1530q^{5}-9128q^{7}+21132q^{11}+\cdots\)
144.10.a.n 144.a 1.a $1$ $74.165$ \(\Q\) None 8.10.a.a \(0\) \(0\) \(2074\) \(4344\) $+$ $-$ $\mathrm{SU}(2)$ \(q+2074q^{5}+4344q^{7}+93644q^{11}+\cdots\)
144.10.a.o 144.a 1.a $2$ $74.165$ \(\Q(\sqrt{886}) \) None 72.10.a.f \(0\) \(0\) \(-736\) \(2952\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-368+\beta )q^{5}+(1476-4\beta )q^{7}+\cdots\)
144.10.a.p 144.a 1.a $2$ $74.165$ \(\Q(\sqrt{70}) \) None 36.10.a.c \(0\) \(0\) \(0\) \(-952\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{5}-476q^{7}+20\beta q^{11}+60002q^{13}+\cdots\)
144.10.a.q 144.a 1.a $2$ $74.165$ \(\Q(\sqrt{886}) \) None 72.10.a.f \(0\) \(0\) \(736\) \(2952\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(368+\beta )q^{5}+(1476+4\beta )q^{7}+(-3392+\cdots)q^{11}+\cdots\)
144.10.a.r 144.a 1.a $2$ $74.165$ \(\Q(\sqrt{109}) \) None 24.10.a.d \(0\) \(0\) \(772\) \(2880\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(386+\beta )q^{5}+(1440-5\beta )q^{7}+(21124+\cdots)q^{11}+\cdots\)

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(144))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_0(144)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 10}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 9}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 5}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 2}\)