Defining parameters
Level: | \( N \) | \(=\) | \( 144 = 2^{4} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 144.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 18 \) | ||
Sturm bound: | \(240\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(144))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 228 | 23 | 205 |
Cusp forms | 204 | 22 | 182 |
Eisenstein series | 24 | 1 | 23 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||
\(+\) | \(+\) | \(+\) | \(56\) | \(4\) | \(52\) | \(50\) | \(4\) | \(46\) | \(6\) | \(0\) | \(6\) | |||
\(+\) | \(-\) | \(-\) | \(58\) | \(7\) | \(51\) | \(52\) | \(7\) | \(45\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(+\) | \(-\) | \(58\) | \(5\) | \(53\) | \(52\) | \(5\) | \(47\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(-\) | \(+\) | \(56\) | \(7\) | \(49\) | \(50\) | \(6\) | \(44\) | \(6\) | \(1\) | \(5\) | |||
Plus space | \(+\) | \(112\) | \(11\) | \(101\) | \(100\) | \(10\) | \(90\) | \(12\) | \(1\) | \(11\) | ||||
Minus space | \(-\) | \(116\) | \(12\) | \(104\) | \(104\) | \(12\) | \(92\) | \(12\) | \(0\) | \(12\) |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(144))\) into newform subspaces
Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(144))\) into lower level spaces
\( S_{10}^{\mathrm{old}}(\Gamma_0(144)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 10}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 9}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 5}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 2}\)