Properties

Label 1430.2.q
Level $1430$
Weight $2$
Character orbit 1430.q
Rep. character $\chi_{1430}(417,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $144$
Sturm bound $504$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1430 = 2 \cdot 5 \cdot 11 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1430.q (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 55 \)
Character field: \(\Q(i)\)
Sturm bound: \(504\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1430, [\chi])\).

Total New Old
Modular forms 520 144 376
Cusp forms 488 144 344
Eisenstein series 32 0 32

Trace form

\( 144 q - 8 q^{3} - 16 q^{5} + 8 q^{12} + 8 q^{15} - 144 q^{16} - 8 q^{20} - 8 q^{22} + 24 q^{23} + 40 q^{25} + 16 q^{27} - 8 q^{33} - 144 q^{36} - 8 q^{37} - 80 q^{42} - 88 q^{45} + 8 q^{47} + 8 q^{48} + 8 q^{53}+ \cdots + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1430, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1430, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1430, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(110, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(715, [\chi])\)\(^{\oplus 2}\)