Defining parameters
Level: | \( N \) | \(=\) | \( 1430 = 2 \cdot 5 \cdot 11 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1430.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 22 \) | ||
Sturm bound: | \(504\) | ||
Trace bound: | \(9\) | ||
Distinguishing \(T_p\): | \(3\), \(7\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1430))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 260 | 41 | 219 |
Cusp forms | 245 | 41 | 204 |
Eisenstein series | 15 | 0 | 15 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | \(11\) | \(13\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(12\) | \(3\) | \(9\) | \(12\) | \(3\) | \(9\) | \(0\) | \(0\) | \(0\) | |||
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(18\) | \(4\) | \(14\) | \(17\) | \(4\) | \(13\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(19\) | \(3\) | \(16\) | \(18\) | \(3\) | \(15\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(15\) | \(1\) | \(14\) | \(14\) | \(1\) | \(13\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(19\) | \(2\) | \(17\) | \(18\) | \(2\) | \(16\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(16\) | \(1\) | \(15\) | \(15\) | \(1\) | \(14\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(15\) | \(2\) | \(13\) | \(14\) | \(2\) | \(12\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(16\) | \(4\) | \(12\) | \(15\) | \(4\) | \(11\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(16\) | \(3\) | \(13\) | \(15\) | \(3\) | \(12\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(15\) | \(1\) | \(14\) | \(14\) | \(1\) | \(13\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(16\) | \(2\) | \(14\) | \(15\) | \(2\) | \(13\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(19\) | \(5\) | \(14\) | \(18\) | \(5\) | \(13\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(18\) | \(2\) | \(16\) | \(17\) | \(2\) | \(15\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(16\) | \(4\) | \(12\) | \(15\) | \(4\) | \(11\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(15\) | \(3\) | \(12\) | \(14\) | \(3\) | \(11\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(15\) | \(1\) | \(14\) | \(14\) | \(1\) | \(13\) | \(1\) | \(0\) | \(1\) | |||
Plus space | \(+\) | \(122\) | \(13\) | \(109\) | \(115\) | \(13\) | \(102\) | \(7\) | \(0\) | \(7\) | ||||||
Minus space | \(-\) | \(138\) | \(28\) | \(110\) | \(130\) | \(28\) | \(102\) | \(8\) | \(0\) | \(8\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1430))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1430))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1430)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(65))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(110))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(130))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(143))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(286))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(715))\)\(^{\oplus 2}\)