Properties

Label 1430.2.a
Level $1430$
Weight $2$
Character orbit 1430.a
Rep. character $\chi_{1430}(1,\cdot)$
Character field $\Q$
Dimension $41$
Newform subspaces $22$
Sturm bound $504$
Trace bound $9$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1430 = 2 \cdot 5 \cdot 11 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1430.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 22 \)
Sturm bound: \(504\)
Trace bound: \(9\)
Distinguishing \(T_p\): \(3\), \(7\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1430))\).

Total New Old
Modular forms 260 41 219
Cusp forms 245 41 204
Eisenstein series 15 0 15

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)\(11\)\(13\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(+\)\(12\)\(3\)\(9\)\(12\)\(3\)\(9\)\(0\)\(0\)\(0\)
\(+\)\(+\)\(+\)\(-\)\(-\)\(18\)\(4\)\(14\)\(17\)\(4\)\(13\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(-\)\(+\)\(-\)\(19\)\(3\)\(16\)\(18\)\(3\)\(15\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(-\)\(-\)\(+\)\(15\)\(1\)\(14\)\(14\)\(1\)\(13\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(+\)\(+\)\(-\)\(19\)\(2\)\(17\)\(18\)\(2\)\(16\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(+\)\(-\)\(+\)\(16\)\(1\)\(15\)\(15\)\(1\)\(14\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(+\)\(+\)\(15\)\(2\)\(13\)\(14\)\(2\)\(12\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(-\)\(-\)\(16\)\(4\)\(12\)\(15\)\(4\)\(11\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(+\)\(+\)\(-\)\(16\)\(3\)\(13\)\(15\)\(3\)\(12\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(+\)\(15\)\(1\)\(14\)\(14\)\(1\)\(13\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(+\)\(+\)\(16\)\(2\)\(14\)\(15\)\(2\)\(13\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(19\)\(5\)\(14\)\(18\)\(5\)\(13\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(+\)\(+\)\(18\)\(2\)\(16\)\(17\)\(2\)\(15\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(16\)\(4\)\(12\)\(15\)\(4\)\(11\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(15\)\(3\)\(12\)\(14\)\(3\)\(11\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(+\)\(15\)\(1\)\(14\)\(14\)\(1\)\(13\)\(1\)\(0\)\(1\)
Plus space\(+\)\(122\)\(13\)\(109\)\(115\)\(13\)\(102\)\(7\)\(0\)\(7\)
Minus space\(-\)\(138\)\(28\)\(110\)\(130\)\(28\)\(102\)\(8\)\(0\)\(8\)

Trace form

\( 41 q + q^{2} + 4 q^{3} + 41 q^{4} - 3 q^{5} - 4 q^{6} + 8 q^{7} + q^{8} + 45 q^{9} + q^{10} + q^{11} + 4 q^{12} + q^{13} + 4 q^{15} + 41 q^{16} + 2 q^{17} + 13 q^{18} + 4 q^{19} - 3 q^{20} + 16 q^{21}+ \cdots + 13 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1430))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5 11 13
1430.2.a.a 1430.a 1.a $1$ $11.419$ \(\Q\) None 1430.2.a.a \(-1\) \(-1\) \(-1\) \(-1\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\)
1430.2.a.b 1430.a 1.a $1$ $11.419$ \(\Q\) None 1430.2.a.b \(-1\) \(-1\) \(1\) \(1\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}+q^{7}+\cdots\)
1430.2.a.c 1430.a 1.a $1$ $11.419$ \(\Q\) None 1430.2.a.c \(-1\) \(1\) \(1\) \(-1\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}+q^{5}-q^{6}-q^{7}+\cdots\)
1430.2.a.d 1430.a 1.a $1$ $11.419$ \(\Q\) None 1430.2.a.d \(-1\) \(2\) \(1\) \(4\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+2q^{3}+q^{4}+q^{5}-2q^{6}+4q^{7}+\cdots\)
1430.2.a.e 1430.a 1.a $1$ $11.419$ \(\Q\) None 1430.2.a.e \(1\) \(-3\) \(1\) \(-3\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-3q^{3}+q^{4}+q^{5}-3q^{6}-3q^{7}+\cdots\)
1430.2.a.f 1430.a 1.a $1$ $11.419$ \(\Q\) None 1430.2.a.f \(1\) \(-2\) \(-1\) \(-4\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-2q^{3}+q^{4}-q^{5}-2q^{6}-4q^{7}+\cdots\)
1430.2.a.g 1430.a 1.a $1$ $11.419$ \(\Q\) None 1430.2.a.g \(1\) \(-1\) \(-1\) \(1\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\)
1430.2.a.h 1430.a 1.a $1$ $11.419$ \(\Q\) None 1430.2.a.h \(1\) \(0\) \(1\) \(0\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{5}+q^{8}-3q^{9}+q^{10}+\cdots\)
1430.2.a.i 1430.a 1.a $1$ $11.419$ \(\Q\) None 1430.2.a.i \(1\) \(2\) \(-1\) \(4\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+2q^{3}+q^{4}-q^{5}+2q^{6}+4q^{7}+\cdots\)
1430.2.a.j 1430.a 1.a $1$ $11.419$ \(\Q\) None 1430.2.a.j \(1\) \(2\) \(1\) \(4\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+2q^{3}+q^{4}+q^{5}+2q^{6}+4q^{7}+\cdots\)
1430.2.a.k 1430.a 1.a $1$ $11.419$ \(\Q\) None 1430.2.a.k \(1\) \(3\) \(1\) \(-1\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+3q^{3}+q^{4}+q^{5}+3q^{6}-q^{7}+\cdots\)
1430.2.a.l 1430.a 1.a $2$ $11.419$ \(\Q(\sqrt{2}) \) None 1430.2.a.l \(-2\) \(-2\) \(2\) \(-2\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+(-1+\beta )q^{3}+q^{4}+q^{5}+(1+\cdots)q^{6}+\cdots\)
1430.2.a.m 1430.a 1.a $2$ $11.419$ \(\Q(\sqrt{2}) \) None 1430.2.a.m \(2\) \(-2\) \(-2\) \(-2\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+(-1+\beta )q^{3}+q^{4}-q^{5}+(-1+\cdots)q^{6}+\cdots\)
1430.2.a.n 1430.a 1.a $2$ $11.419$ \(\Q(\sqrt{2}) \) None 1430.2.a.n \(2\) \(-2\) \(2\) \(-6\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+(-1+\beta )q^{3}+q^{4}+q^{5}+(-1+\cdots)q^{6}+\cdots\)
1430.2.a.o 1430.a 1.a $2$ $11.419$ \(\Q(\sqrt{2}) \) None 1430.2.a.o \(2\) \(0\) \(2\) \(0\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+\beta q^{3}+q^{4}+q^{5}+\beta q^{6}+2\beta q^{7}+\cdots\)
1430.2.a.p 1430.a 1.a $2$ $11.419$ \(\Q(\sqrt{7}) \) None 1430.2.a.p \(2\) \(0\) \(2\) \(0\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+\beta q^{3}+q^{4}+q^{5}+\beta q^{6}-\beta q^{7}+\cdots\)
1430.2.a.q 1430.a 1.a $3$ $11.419$ 3.3.229.1 None 1430.2.a.q \(-3\) \(-1\) \(-3\) \(1\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+\beta _{2}q^{3}+q^{4}-q^{5}-\beta _{2}q^{6}+\cdots\)
1430.2.a.r 1430.a 1.a $3$ $11.419$ 3.3.568.1 None 1430.2.a.r \(-3\) \(2\) \(-3\) \(-2\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+(1-\beta _{1})q^{3}+q^{4}-q^{5}+(-1+\cdots)q^{6}+\cdots\)
1430.2.a.s 1430.a 1.a $3$ $11.419$ 3.3.568.1 None 1430.2.a.s \(3\) \(1\) \(-3\) \(7\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+\beta _{1}q^{3}+q^{4}-q^{5}+\beta _{1}q^{6}+\cdots\)
1430.2.a.t 1430.a 1.a $3$ $11.419$ 3.3.1708.1 None 1430.2.a.t \(3\) \(2\) \(-3\) \(4\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+(1-\beta _{1})q^{3}+q^{4}-q^{5}+(1-\beta _{1}+\cdots)q^{6}+\cdots\)
1430.2.a.u 1430.a 1.a $4$ $11.419$ 4.4.170528.1 None 1430.2.a.u \(-4\) \(0\) \(-4\) \(0\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+\beta _{1}q^{3}+q^{4}-q^{5}-\beta _{1}q^{6}+\cdots\)
1430.2.a.v 1430.a 1.a $4$ $11.419$ 4.4.40864.1 None 1430.2.a.v \(-4\) \(4\) \(4\) \(4\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+(1-\beta _{1})q^{3}+q^{4}+q^{5}+(-1+\cdots)q^{6}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1430))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(1430)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(65))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(110))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(130))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(143))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(286))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(715))\)\(^{\oplus 2}\)