Properties

Label 1428.2.bo
Level $1428$
Weight $2$
Character orbit 1428.bo
Rep. character $\chi_{1428}(253,\cdot)$
Character field $\Q(\zeta_{8})$
Dimension $64$
Newform subspaces $2$
Sturm bound $576$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1428 = 2^{2} \cdot 3 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1428.bo (of order \(8\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 17 \)
Character field: \(\Q(\zeta_{8})\)
Newform subspaces: \( 2 \)
Sturm bound: \(576\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1428, [\chi])\).

Total New Old
Modular forms 1200 64 1136
Cusp forms 1104 64 1040
Eisenstein series 96 0 96

Trace form

\( 64 q - 16 q^{17} - 16 q^{19} - 16 q^{23} + 48 q^{29} + 48 q^{31} + 16 q^{33} + 32 q^{39} + 32 q^{41} - 32 q^{43} + 16 q^{53} + 32 q^{57} + 32 q^{59} - 16 q^{61} + 32 q^{65} - 16 q^{69} + 32 q^{71} + 32 q^{73}+ \cdots - 32 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1428, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1428.2.bo.a 1428.bo 17.d $24$ $11.403$ None 1428.2.bo.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$
1428.2.bo.b 1428.bo 17.d $40$ $11.403$ None 1428.2.bo.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1428, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1428, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(17, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(34, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(51, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(68, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(102, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(119, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(204, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(238, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(357, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(476, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(714, [\chi])\)\(^{\oplus 2}\)