Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1428, [\chi])\).
|
Total |
New |
Old |
Modular forms
| 1200 |
64 |
1136 |
Cusp forms
| 1104 |
64 |
1040 |
Eisenstein series
| 96 |
0 |
96 |
\( S_{2}^{\mathrm{old}}(1428, [\chi]) \simeq \)
\(S_{2}^{\mathrm{new}}(17, [\chi])\)\(^{\oplus 12}\)\(\oplus\)
\(S_{2}^{\mathrm{new}}(34, [\chi])\)\(^{\oplus 8}\)\(\oplus\)
\(S_{2}^{\mathrm{new}}(51, [\chi])\)\(^{\oplus 6}\)\(\oplus\)
\(S_{2}^{\mathrm{new}}(68, [\chi])\)\(^{\oplus 4}\)\(\oplus\)
\(S_{2}^{\mathrm{new}}(102, [\chi])\)\(^{\oplus 4}\)\(\oplus\)
\(S_{2}^{\mathrm{new}}(119, [\chi])\)\(^{\oplus 6}\)\(\oplus\)
\(S_{2}^{\mathrm{new}}(204, [\chi])\)\(^{\oplus 2}\)\(\oplus\)
\(S_{2}^{\mathrm{new}}(238, [\chi])\)\(^{\oplus 4}\)\(\oplus\)
\(S_{2}^{\mathrm{new}}(357, [\chi])\)\(^{\oplus 3}\)\(\oplus\)
\(S_{2}^{\mathrm{new}}(476, [\chi])\)\(^{\oplus 2}\)\(\oplus\)
\(S_{2}^{\mathrm{new}}(714, [\chi])\)\(^{\oplus 2}\)