Defining parameters
| Level: | \( N \) | \(=\) | \( 14079 = 3 \cdot 13 \cdot 19^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 14079.eq (of order \(114\) and degree \(36\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 4693 \) |
| Character field: | \(\Q(\zeta_{114})\) | ||
| Sturm bound: | \(3547\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(14079, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 63936 | 31968 | 31968 |
| Cusp forms | 63648 | 31968 | 31680 |
| Eisenstein series | 288 | 0 | 288 |
Decomposition of \(S_{2}^{\mathrm{new}}(14079, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(14079, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(14079, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(4693, [\chi])\)\(^{\oplus 2}\)