Properties

Label 1404.2.j.a.289.1
Level $1404$
Weight $2$
Character 1404.289
Analytic conductor $11.211$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1404,2,Mod(289,1404)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1404.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1404, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1404 = 2^{2} \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1404.j (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.2109964438\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 468)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.1
Character \(\chi\) \(=\) 1404.289
Dual form 1404.2.j.a.685.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.03195 - 3.51944i) q^{5} +(0.616999 + 1.06867i) q^{7} +6.31719 q^{11} +(-3.21746 - 1.62726i) q^{13} +(2.45192 - 4.24685i) q^{17} +(0.346591 - 0.600313i) q^{19} +(0.706995 - 1.22455i) q^{23} +(-5.75764 + 9.97252i) q^{25} -6.70300 q^{29} +(1.88555 + 3.26586i) q^{31} +(2.50742 - 4.34298i) q^{35} +(-1.48705 - 2.57565i) q^{37} +(3.56129 - 6.16833i) q^{41} +(0.566773 + 0.981679i) q^{43} +(3.76496 - 6.52111i) q^{47} +(2.73862 - 4.74344i) q^{49} -13.1961 q^{53} +(-12.8362 - 22.2330i) q^{55} -10.4480 q^{59} +(-2.88154 - 4.99097i) q^{61} +(0.810654 + 14.6302i) q^{65} +(-3.70443 + 6.41626i) q^{67} +(1.36182 - 2.35874i) q^{71} -1.45266 q^{73} +(3.89770 + 6.75102i) q^{77} +(3.73863 - 6.47550i) q^{79} +(-4.02165 + 6.96570i) q^{83} -19.9287 q^{85} +(-6.75612 - 11.7020i) q^{89} +(-0.246154 - 4.44243i) q^{91} -2.81702 q^{95} +(-1.53197 - 2.65344i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 2 q^{7} - 8 q^{11} + q^{13} + 8 q^{17} - q^{19} + 4 q^{23} - 14 q^{25} - 26 q^{29} + 2 q^{31} - 3 q^{35} - q^{37} - 4 q^{41} + 2 q^{43} - 11 q^{47} - 12 q^{49} - 52 q^{53} - 16 q^{59} - 7 q^{61}+ \cdots - 25 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1404\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(703\) \(1081\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.03195 3.51944i −0.908716 1.57394i −0.815851 0.578263i \(-0.803731\pi\)
−0.0928649 0.995679i \(-0.529602\pi\)
\(6\) 0 0
\(7\) 0.616999 + 1.06867i 0.233204 + 0.403921i 0.958749 0.284253i \(-0.0917457\pi\)
−0.725545 + 0.688174i \(0.758412\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 6.31719 1.90471 0.952353 0.304999i \(-0.0986563\pi\)
0.952353 + 0.304999i \(0.0986563\pi\)
\(12\) 0 0
\(13\) −3.21746 1.62726i −0.892361 0.451321i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.45192 4.24685i 0.594678 1.03001i −0.398914 0.916988i \(-0.630613\pi\)
0.993592 0.113025i \(-0.0360540\pi\)
\(18\) 0 0
\(19\) 0.346591 0.600313i 0.0795134 0.137721i −0.823527 0.567277i \(-0.807997\pi\)
0.903040 + 0.429556i \(0.141330\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.706995 1.22455i 0.147419 0.255336i −0.782854 0.622205i \(-0.786237\pi\)
0.930273 + 0.366869i \(0.119570\pi\)
\(24\) 0 0
\(25\) −5.75764 + 9.97252i −1.15153 + 1.99450i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −6.70300 −1.24472 −0.622358 0.782733i \(-0.713825\pi\)
−0.622358 + 0.782733i \(0.713825\pi\)
\(30\) 0 0
\(31\) 1.88555 + 3.26586i 0.338654 + 0.586566i 0.984180 0.177173i \(-0.0566951\pi\)
−0.645526 + 0.763738i \(0.723362\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.50742 4.34298i 0.423832 0.734098i
\(36\) 0 0
\(37\) −1.48705 2.57565i −0.244470 0.423434i 0.717513 0.696545i \(-0.245280\pi\)
−0.961982 + 0.273112i \(0.911947\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.56129 6.16833i 0.556179 0.963331i −0.441631 0.897197i \(-0.645600\pi\)
0.997811 0.0661343i \(-0.0210666\pi\)
\(42\) 0 0
\(43\) 0.566773 + 0.981679i 0.0864320 + 0.149705i 0.906001 0.423277i \(-0.139120\pi\)
−0.819569 + 0.572981i \(0.805787\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.76496 6.52111i 0.549176 0.951201i −0.449155 0.893454i \(-0.648275\pi\)
0.998331 0.0577473i \(-0.0183918\pi\)
\(48\) 0 0
\(49\) 2.73862 4.74344i 0.391232 0.677634i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −13.1961 −1.81263 −0.906315 0.422603i \(-0.861116\pi\)
−0.906315 + 0.422603i \(0.861116\pi\)
\(54\) 0 0
\(55\) −12.8362 22.2330i −1.73084 2.99789i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −10.4480 −1.36021 −0.680105 0.733115i \(-0.738066\pi\)
−0.680105 + 0.733115i \(0.738066\pi\)
\(60\) 0 0
\(61\) −2.88154 4.99097i −0.368943 0.639028i 0.620458 0.784240i \(-0.286947\pi\)
−0.989401 + 0.145212i \(0.953614\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.810654 + 14.6302i 0.100549 + 1.81465i
\(66\) 0 0
\(67\) −3.70443 + 6.41626i −0.452568 + 0.783871i −0.998545 0.0539295i \(-0.982825\pi\)
0.545977 + 0.837800i \(0.316159\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.36182 2.35874i 0.161618 0.279930i −0.773831 0.633392i \(-0.781662\pi\)
0.935449 + 0.353461i \(0.114995\pi\)
\(72\) 0 0
\(73\) −1.45266 −0.170021 −0.0850104 0.996380i \(-0.527092\pi\)
−0.0850104 + 0.996380i \(0.527092\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.89770 + 6.75102i 0.444185 + 0.769350i
\(78\) 0 0
\(79\) 3.73863 6.47550i 0.420629 0.728550i −0.575372 0.817892i \(-0.695143\pi\)
0.996001 + 0.0893413i \(0.0284762\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −4.02165 + 6.96570i −0.441433 + 0.764585i −0.997796 0.0663546i \(-0.978863\pi\)
0.556363 + 0.830939i \(0.312196\pi\)
\(84\) 0 0
\(85\) −19.9287 −2.16157
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −6.75612 11.7020i −0.716148 1.24040i −0.962515 0.271228i \(-0.912570\pi\)
0.246367 0.969177i \(-0.420763\pi\)
\(90\) 0 0
\(91\) −0.246154 4.44243i −0.0258040 0.465693i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2.81702 −0.289020
\(96\) 0 0
\(97\) −1.53197 2.65344i −0.155547 0.269416i 0.777711 0.628622i \(-0.216381\pi\)
−0.933258 + 0.359206i \(0.883047\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.11594 0.608558 0.304279 0.952583i \(-0.401584\pi\)
0.304279 + 0.952583i \(0.401584\pi\)
\(102\) 0 0
\(103\) −2.17185 3.76176i −0.213999 0.370657i 0.738964 0.673745i \(-0.235316\pi\)
−0.952962 + 0.303089i \(0.901982\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.96304 5.13214i −0.286448 0.496143i 0.686511 0.727119i \(-0.259141\pi\)
−0.972959 + 0.230976i \(0.925808\pi\)
\(108\) 0 0
\(109\) −0.553911 −0.0530550 −0.0265275 0.999648i \(-0.508445\pi\)
−0.0265275 + 0.999648i \(0.508445\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 6.10479 0.574290 0.287145 0.957887i \(-0.407294\pi\)
0.287145 + 0.957887i \(0.407294\pi\)
\(114\) 0 0
\(115\) −5.74631 −0.535846
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 6.05134 0.554725
\(120\) 0 0
\(121\) 28.9069 2.62790
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 26.4774 2.36821
\(126\) 0 0
\(127\) 4.40433 + 7.62852i 0.390821 + 0.676922i 0.992558 0.121773i \(-0.0388579\pi\)
−0.601737 + 0.798694i \(0.705525\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −5.71507 9.89879i −0.499328 0.864861i 0.500672 0.865637i \(-0.333086\pi\)
−1.00000 0.000776096i \(0.999753\pi\)
\(132\) 0 0
\(133\) 0.855385 0.0741713
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 5.85199 + 10.1359i 0.499969 + 0.865972i 1.00000 3.54390e-5i \(-1.12806e-5\pi\)
−0.500031 + 0.866008i \(0.666678\pi\)
\(138\) 0 0
\(139\) 6.99465 0.593279 0.296639 0.954990i \(-0.404134\pi\)
0.296639 + 0.954990i \(0.404134\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −20.3253 10.2797i −1.69969 0.859634i
\(144\) 0 0
\(145\) 13.6202 + 23.5908i 1.13109 + 1.95911i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −9.10505 −0.745915 −0.372957 0.927848i \(-0.621656\pi\)
−0.372957 + 0.927848i \(0.621656\pi\)
\(150\) 0 0
\(151\) 0.185604 0.321476i 0.0151043 0.0261614i −0.858374 0.513024i \(-0.828525\pi\)
0.873479 + 0.486862i \(0.161859\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 7.66267 13.2721i 0.615480 1.06604i
\(156\) 0 0
\(157\) −0.686457 1.18898i −0.0547852 0.0948908i 0.837332 0.546694i \(-0.184114\pi\)
−0.892117 + 0.451804i \(0.850781\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.74486 0.137514
\(162\) 0 0
\(163\) −8.53586 + 14.7845i −0.668580 + 1.15802i 0.309721 + 0.950828i \(0.399764\pi\)
−0.978301 + 0.207188i \(0.933569\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.57475 2.72755i 0.121858 0.211064i −0.798643 0.601806i \(-0.794448\pi\)
0.920500 + 0.390742i \(0.127781\pi\)
\(168\) 0 0
\(169\) 7.70403 + 10.4713i 0.592618 + 0.805484i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 4.40132 + 7.62332i 0.334626 + 0.579590i 0.983413 0.181380i \(-0.0580565\pi\)
−0.648787 + 0.760970i \(0.724723\pi\)
\(174\) 0 0
\(175\) −14.2098 −1.07416
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 10.8390 + 18.7736i 0.810142 + 1.40321i 0.912764 + 0.408487i \(0.133944\pi\)
−0.102622 + 0.994720i \(0.532723\pi\)
\(180\) 0 0
\(181\) 17.3637 1.29063 0.645315 0.763916i \(-0.276726\pi\)
0.645315 + 0.763916i \(0.276726\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −6.04322 + 10.4672i −0.444307 + 0.769562i
\(186\) 0 0
\(187\) 15.4893 26.8282i 1.13269 1.96187i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1.11975 + 1.93946i 0.0810221 + 0.140334i 0.903689 0.428189i \(-0.140848\pi\)
−0.822667 + 0.568523i \(0.807515\pi\)
\(192\) 0 0
\(193\) 9.45140 16.3703i 0.680326 1.17836i −0.294555 0.955635i \(-0.595171\pi\)
0.974881 0.222725i \(-0.0714953\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −4.09745 7.09699i −0.291931 0.505640i 0.682335 0.731039i \(-0.260964\pi\)
−0.974266 + 0.225400i \(0.927631\pi\)
\(198\) 0 0
\(199\) −0.765637 + 1.32612i −0.0542745 + 0.0940063i −0.891886 0.452260i \(-0.850618\pi\)
0.837612 + 0.546266i \(0.183951\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −4.13575 7.16333i −0.290273 0.502767i
\(204\) 0 0
\(205\) −28.9454 −2.02164
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.18948 3.79229i 0.151449 0.262318i
\(210\) 0 0
\(211\) 9.19658 15.9289i 0.633119 1.09659i −0.353792 0.935324i \(-0.615108\pi\)
0.986910 0.161269i \(-0.0515588\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2.30331 3.98944i 0.157084 0.272078i
\(216\) 0 0
\(217\) −2.32676 + 4.03007i −0.157951 + 0.273579i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −14.7997 + 9.67414i −0.995535 + 0.650753i
\(222\) 0 0
\(223\) −21.1949 −1.41932 −0.709658 0.704546i \(-0.751151\pi\)
−0.709658 + 0.704546i \(0.751151\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 9.51397 + 16.4787i 0.631464 + 1.09373i 0.987253 + 0.159162i \(0.0508791\pi\)
−0.355788 + 0.934567i \(0.615788\pi\)
\(228\) 0 0
\(229\) 7.57460 + 13.1196i 0.500544 + 0.866967i 1.00000 0.000627856i \(0.000199853\pi\)
−0.499456 + 0.866339i \(0.666467\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 20.1509 1.32013 0.660064 0.751209i \(-0.270529\pi\)
0.660064 + 0.751209i \(0.270529\pi\)
\(234\) 0 0
\(235\) −30.6009 −1.99618
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.15357 + 1.99805i 0.0746186 + 0.129243i 0.900920 0.433985i \(-0.142893\pi\)
−0.826302 + 0.563228i \(0.809559\pi\)
\(240\) 0 0
\(241\) 5.87814 + 10.1812i 0.378644 + 0.655831i 0.990865 0.134856i \(-0.0430571\pi\)
−0.612221 + 0.790687i \(0.709724\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −22.2590 −1.42207
\(246\) 0 0
\(247\) −2.09201 + 1.36749i −0.133111 + 0.0870110i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 9.40736 16.2940i 0.593787 1.02847i −0.399929 0.916546i \(-0.630965\pi\)
0.993717 0.111924i \(-0.0357013\pi\)
\(252\) 0 0
\(253\) 4.46622 7.73572i 0.280789 0.486341i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1.79897 + 3.11591i −0.112217 + 0.194365i −0.916664 0.399659i \(-0.869128\pi\)
0.804447 + 0.594025i \(0.202462\pi\)
\(258\) 0 0
\(259\) 1.83502 3.17834i 0.114022 0.197493i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −6.36349 −0.392390 −0.196195 0.980565i \(-0.562859\pi\)
−0.196195 + 0.980565i \(0.562859\pi\)
\(264\) 0 0
\(265\) 26.8139 + 46.4430i 1.64716 + 2.85297i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 4.24582 7.35398i 0.258872 0.448380i −0.707068 0.707146i \(-0.749982\pi\)
0.965940 + 0.258766i \(0.0833157\pi\)
\(270\) 0 0
\(271\) 15.8863 + 27.5159i 0.965023 + 1.67147i 0.709553 + 0.704652i \(0.248897\pi\)
0.255470 + 0.966817i \(0.417770\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −36.3721 + 62.9983i −2.19332 + 3.79894i
\(276\) 0 0
\(277\) −7.54361 13.0659i −0.453252 0.785055i 0.545334 0.838219i \(-0.316403\pi\)
−0.998586 + 0.0531638i \(0.983069\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 9.06790 15.7061i 0.540945 0.936945i −0.457905 0.889001i \(-0.651400\pi\)
0.998850 0.0479435i \(-0.0152668\pi\)
\(282\) 0 0
\(283\) 4.76421 8.25186i 0.283203 0.490522i −0.688969 0.724791i \(-0.741936\pi\)
0.972172 + 0.234269i \(0.0752696\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 8.78924 0.518813
\(288\) 0 0
\(289\) −3.52384 6.10348i −0.207285 0.359028i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0.308197 0.0180050 0.00900252 0.999959i \(-0.497134\pi\)
0.00900252 + 0.999959i \(0.497134\pi\)
\(294\) 0 0
\(295\) 21.2298 + 36.7710i 1.23604 + 2.14089i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −4.26739 + 2.78947i −0.246789 + 0.161319i
\(300\) 0 0
\(301\) −0.699397 + 1.21139i −0.0403125 + 0.0698234i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −11.7103 + 20.2828i −0.670528 + 1.16139i
\(306\) 0 0
\(307\) −30.6770 −1.75083 −0.875415 0.483372i \(-0.839412\pi\)
−0.875415 + 0.483372i \(0.839412\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −11.6222 20.1302i −0.659033 1.14148i −0.980866 0.194682i \(-0.937632\pi\)
0.321833 0.946796i \(-0.395701\pi\)
\(312\) 0 0
\(313\) 3.47080 6.01160i 0.196181 0.339796i −0.751106 0.660182i \(-0.770479\pi\)
0.947287 + 0.320386i \(0.103813\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −6.08590 + 10.5411i −0.341818 + 0.592046i −0.984770 0.173860i \(-0.944376\pi\)
0.642952 + 0.765906i \(0.277709\pi\)
\(318\) 0 0
\(319\) −42.3442 −2.37082
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −1.69963 2.94384i −0.0945698 0.163800i
\(324\) 0 0
\(325\) 34.7529 22.7170i 1.92774 1.26011i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 9.29192 0.512280
\(330\) 0 0
\(331\) 9.32850 + 16.1574i 0.512741 + 0.888093i 0.999891 + 0.0147750i \(0.00470321\pi\)
−0.487150 + 0.873318i \(0.661963\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 30.1089 1.64502
\(336\) 0 0
\(337\) −10.0206 17.3562i −0.545858 0.945454i −0.998552 0.0537879i \(-0.982871\pi\)
0.452694 0.891666i \(-0.350463\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 11.9114 + 20.6311i 0.645036 + 1.11723i
\(342\) 0 0
\(343\) 15.3969 0.831355
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 20.2457 1.08685 0.543424 0.839458i \(-0.317127\pi\)
0.543424 + 0.839458i \(0.317127\pi\)
\(348\) 0 0
\(349\) 35.8018 1.91642 0.958212 0.286058i \(-0.0923452\pi\)
0.958212 + 0.286058i \(0.0923452\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −26.5299 −1.41204 −0.706022 0.708189i \(-0.749512\pi\)
−0.706022 + 0.708189i \(0.749512\pi\)
\(354\) 0 0
\(355\) −11.0686 −0.587459
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 5.94247 0.313632 0.156816 0.987628i \(-0.449877\pi\)
0.156816 + 0.987628i \(0.449877\pi\)
\(360\) 0 0
\(361\) 9.25975 + 16.0384i 0.487355 + 0.844124i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2.95173 + 5.11255i 0.154501 + 0.267603i
\(366\) 0 0
\(367\) 20.0052 1.04426 0.522130 0.852866i \(-0.325137\pi\)
0.522130 + 0.852866i \(0.325137\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −8.14201 14.1024i −0.422712 0.732159i
\(372\) 0 0
\(373\) −19.7380 −1.02199 −0.510997 0.859583i \(-0.670724\pi\)
−0.510997 + 0.859583i \(0.670724\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 21.5666 + 10.9075i 1.11074 + 0.561767i
\(378\) 0 0
\(379\) −1.58794 2.75040i −0.0815672 0.141278i 0.822356 0.568973i \(-0.192659\pi\)
−0.903923 + 0.427695i \(0.859326\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −3.50333 −0.179012 −0.0895058 0.995986i \(-0.528529\pi\)
−0.0895058 + 0.995986i \(0.528529\pi\)
\(384\) 0 0
\(385\) 15.8399 27.4355i 0.807275 1.39824i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −7.61988 + 13.1980i −0.386343 + 0.669166i −0.991955 0.126595i \(-0.959595\pi\)
0.605612 + 0.795760i \(0.292929\pi\)
\(390\) 0 0
\(391\) −3.46699 6.00501i −0.175333 0.303686i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −30.3868 −1.52893
\(396\) 0 0
\(397\) −6.12766 + 10.6134i −0.307538 + 0.532672i −0.977823 0.209432i \(-0.932839\pi\)
0.670285 + 0.742104i \(0.266172\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 7.09517 12.2892i 0.354316 0.613693i −0.632685 0.774409i \(-0.718047\pi\)
0.987001 + 0.160716i \(0.0513804\pi\)
\(402\) 0 0
\(403\) −0.752245 13.5760i −0.0374720 0.676270i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −9.39398 16.2709i −0.465642 0.806516i
\(408\) 0 0
\(409\) 15.0986 0.746577 0.373289 0.927715i \(-0.378230\pi\)
0.373289 + 0.927715i \(0.378230\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −6.44639 11.1655i −0.317206 0.549417i
\(414\) 0 0
\(415\) 32.6872 1.60455
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 7.45721 12.9163i 0.364309 0.631001i −0.624356 0.781140i \(-0.714639\pi\)
0.988665 + 0.150139i \(0.0479720\pi\)
\(420\) 0 0
\(421\) 5.12630 8.87902i 0.249841 0.432737i −0.713641 0.700512i \(-0.752955\pi\)
0.963481 + 0.267775i \(0.0862884\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 28.2346 + 48.9037i 1.36958 + 2.37218i
\(426\) 0 0
\(427\) 3.55581 6.15885i 0.172078 0.298047i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −4.95272 8.57837i −0.238564 0.413206i 0.721738 0.692166i \(-0.243343\pi\)
−0.960303 + 0.278961i \(0.910010\pi\)
\(432\) 0 0
\(433\) 4.64659 8.04813i 0.223301 0.386768i −0.732507 0.680759i \(-0.761650\pi\)
0.955808 + 0.293991i \(0.0949834\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.490076 0.848836i −0.0234435 0.0406053i
\(438\) 0 0
\(439\) 8.88877 0.424238 0.212119 0.977244i \(-0.431964\pi\)
0.212119 + 0.977244i \(0.431964\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 16.7207 28.9612i 0.794426 1.37599i −0.128777 0.991674i \(-0.541105\pi\)
0.923203 0.384313i \(-0.125562\pi\)
\(444\) 0 0
\(445\) −27.4562 + 47.5556i −1.30155 + 2.25435i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −6.81689 + 11.8072i −0.321709 + 0.557216i −0.980841 0.194811i \(-0.937591\pi\)
0.659132 + 0.752027i \(0.270924\pi\)
\(450\) 0 0
\(451\) 22.4973 38.9665i 1.05936 1.83486i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −15.1347 + 9.89312i −0.709526 + 0.463797i
\(456\) 0 0
\(457\) 4.80714 0.224869 0.112434 0.993659i \(-0.464135\pi\)
0.112434 + 0.993659i \(0.464135\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 13.9532 + 24.1677i 0.649867 + 1.12560i 0.983154 + 0.182777i \(0.0585087\pi\)
−0.333288 + 0.942825i \(0.608158\pi\)
\(462\) 0 0
\(463\) 5.16665 + 8.94891i 0.240115 + 0.415891i 0.960747 0.277427i \(-0.0894816\pi\)
−0.720632 + 0.693318i \(0.756148\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 10.3158 0.477359 0.238679 0.971098i \(-0.423286\pi\)
0.238679 + 0.971098i \(0.423286\pi\)
\(468\) 0 0
\(469\) −9.14252 −0.422162
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 3.58041 + 6.20145i 0.164627 + 0.285143i
\(474\) 0 0
\(475\) 3.99109 + 6.91277i 0.183124 + 0.317180i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 24.4590 1.11756 0.558780 0.829316i \(-0.311269\pi\)
0.558780 + 0.829316i \(0.311269\pi\)
\(480\) 0 0
\(481\) 0.593264 + 10.7068i 0.0270505 + 0.488190i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −6.22575 + 10.7833i −0.282697 + 0.489645i
\(486\) 0 0
\(487\) −2.64195 + 4.57600i −0.119718 + 0.207358i −0.919656 0.392725i \(-0.871532\pi\)
0.799938 + 0.600083i \(0.204866\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −10.0470 + 17.4020i −0.453417 + 0.785341i −0.998596 0.0529788i \(-0.983128\pi\)
0.545179 + 0.838320i \(0.316462\pi\)
\(492\) 0 0
\(493\) −16.4352 + 28.4667i −0.740206 + 1.28207i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3.36096 0.150760
\(498\) 0 0
\(499\) −13.0843 22.6626i −0.585733 1.01452i −0.994784 0.102007i \(-0.967473\pi\)
0.409051 0.912512i \(-0.365860\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 10.6471 18.4414i 0.474732 0.822260i −0.524849 0.851195i \(-0.675878\pi\)
0.999581 + 0.0289349i \(0.00921154\pi\)
\(504\) 0 0
\(505\) −12.4273 21.5247i −0.553006 0.957835i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 11.3324 19.6283i 0.502299 0.870008i −0.497697 0.867351i \(-0.665821\pi\)
0.999996 0.00265726i \(-0.000845834\pi\)
\(510\) 0 0
\(511\) −0.896290 1.55242i −0.0396495 0.0686750i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −8.82618 + 15.2874i −0.388928 + 0.673643i
\(516\) 0 0
\(517\) 23.7840 41.1951i 1.04602 1.81176i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −12.1834 −0.533765 −0.266883 0.963729i \(-0.585994\pi\)
−0.266883 + 0.963729i \(0.585994\pi\)
\(522\) 0 0
\(523\) 17.2158 + 29.8186i 0.752794 + 1.30388i 0.946464 + 0.322810i \(0.104628\pi\)
−0.193670 + 0.981067i \(0.562039\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 18.4928 0.805561
\(528\) 0 0
\(529\) 10.5003 + 18.1871i 0.456536 + 0.790743i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −21.4958 + 14.0512i −0.931085 + 0.608624i
\(534\) 0 0
\(535\) −12.0415 + 20.8565i −0.520600 + 0.901705i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 17.3004 29.9652i 0.745181 1.29069i
\(540\) 0 0
\(541\) −44.8888 −1.92992 −0.964960 0.262398i \(-0.915487\pi\)
−0.964960 + 0.262398i \(0.915487\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1.12552 + 1.94946i 0.0482119 + 0.0835055i
\(546\) 0 0
\(547\) 0.758838 1.31435i 0.0324456 0.0561974i −0.849347 0.527835i \(-0.823004\pi\)
0.881792 + 0.471638i \(0.156337\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2.32320 + 4.02390i −0.0989716 + 0.171424i
\(552\) 0 0
\(553\) 9.22693 0.392369
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 11.0013 + 19.0548i 0.466139 + 0.807376i 0.999252 0.0386680i \(-0.0123115\pi\)
−0.533114 + 0.846044i \(0.678978\pi\)
\(558\) 0 0
\(559\) −0.226116 4.08080i −0.00956369 0.172599i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 7.42747 0.313031 0.156515 0.987676i \(-0.449974\pi\)
0.156515 + 0.987676i \(0.449974\pi\)
\(564\) 0 0
\(565\) −12.4046 21.4854i −0.521866 0.903899i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −25.5156 −1.06967 −0.534836 0.844956i \(-0.679626\pi\)
−0.534836 + 0.844956i \(0.679626\pi\)
\(570\) 0 0
\(571\) −13.2087 22.8782i −0.552769 0.957423i −0.998073 0.0620443i \(-0.980238\pi\)
0.445305 0.895379i \(-0.353095\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 8.14124 + 14.1010i 0.339513 + 0.588054i
\(576\) 0 0
\(577\) 8.20970 0.341774 0.170887 0.985291i \(-0.445337\pi\)
0.170887 + 0.985291i \(0.445337\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −9.92542 −0.411776
\(582\) 0 0
\(583\) −83.3626 −3.45252
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −16.1575 −0.666891 −0.333445 0.942769i \(-0.608211\pi\)
−0.333445 + 0.942769i \(0.608211\pi\)
\(588\) 0 0
\(589\) 2.61405 0.107710
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −38.1696 −1.56744 −0.783718 0.621117i \(-0.786679\pi\)
−0.783718 + 0.621117i \(0.786679\pi\)
\(594\) 0 0
\(595\) −12.2960 21.2973i −0.504087 0.873105i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 10.0046 + 17.3285i 0.408778 + 0.708024i 0.994753 0.102305i \(-0.0326218\pi\)
−0.585975 + 0.810329i \(0.699288\pi\)
\(600\) 0 0
\(601\) −9.00784 −0.367438 −0.183719 0.982979i \(-0.558814\pi\)
−0.183719 + 0.982979i \(0.558814\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −58.7374 101.736i −2.38801 4.13616i
\(606\) 0 0
\(607\) 28.7482 1.16685 0.583427 0.812165i \(-0.301711\pi\)
0.583427 + 0.812165i \(0.301711\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −22.7252 + 14.8548i −0.919361 + 0.600960i
\(612\) 0 0
\(613\) 4.46519 + 7.73394i 0.180347 + 0.312371i 0.941999 0.335616i \(-0.108944\pi\)
−0.761651 + 0.647987i \(0.775611\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −18.6830 −0.752148 −0.376074 0.926590i \(-0.622726\pi\)
−0.376074 + 0.926590i \(0.622726\pi\)
\(618\) 0 0
\(619\) 9.16531 15.8748i 0.368385 0.638061i −0.620928 0.783867i \(-0.713244\pi\)
0.989313 + 0.145806i \(0.0465776\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 8.33705 14.4402i 0.334017 0.578534i
\(624\) 0 0
\(625\) −25.0126 43.3231i −1.00050 1.73292i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −14.5845 −0.581523
\(630\) 0 0
\(631\) −4.52993 + 7.84607i −0.180334 + 0.312347i −0.941994 0.335629i \(-0.891051\pi\)
0.761660 + 0.647976i \(0.224384\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 17.8987 31.0015i 0.710290 1.23026i
\(636\) 0 0
\(637\) −16.5302 + 10.8053i −0.654951 + 0.428123i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 8.84560 + 15.3210i 0.349380 + 0.605144i 0.986139 0.165919i \(-0.0530589\pi\)
−0.636759 + 0.771063i \(0.719726\pi\)
\(642\) 0 0
\(643\) 45.9729 1.81299 0.906497 0.422212i \(-0.138746\pi\)
0.906497 + 0.422212i \(0.138746\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −18.5411 32.1142i −0.728927 1.26254i −0.957337 0.288973i \(-0.906686\pi\)
0.228411 0.973565i \(-0.426647\pi\)
\(648\) 0 0
\(649\) −66.0018 −2.59080
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 12.9233 22.3838i 0.505728 0.875946i −0.494250 0.869320i \(-0.664557\pi\)
0.999978 0.00662658i \(-0.00210932\pi\)
\(654\) 0 0
\(655\) −23.2255 + 40.2277i −0.907494 + 1.57183i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −0.471529 0.816712i −0.0183681 0.0318146i 0.856695 0.515823i \(-0.172514\pi\)
−0.875063 + 0.484008i \(0.839180\pi\)
\(660\) 0 0
\(661\) −4.93286 + 8.54396i −0.191866 + 0.332322i −0.945869 0.324550i \(-0.894787\pi\)
0.754003 + 0.656871i \(0.228121\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.73810 3.01048i −0.0674006 0.116741i
\(666\) 0 0
\(667\) −4.73899 + 8.20817i −0.183494 + 0.317821i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −18.2032 31.5289i −0.702727 1.21716i
\(672\) 0 0
\(673\) −25.3484 −0.977110 −0.488555 0.872533i \(-0.662476\pi\)
−0.488555 + 0.872533i \(0.662476\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 20.2261 35.0326i 0.777352 1.34641i −0.156111 0.987740i \(-0.549896\pi\)
0.933463 0.358674i \(-0.116771\pi\)
\(678\) 0 0
\(679\) 1.89044 3.27434i 0.0725485 0.125658i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 11.6007 20.0931i 0.443890 0.768840i −0.554084 0.832461i \(-0.686931\pi\)
0.997974 + 0.0636208i \(0.0202648\pi\)
\(684\) 0 0
\(685\) 23.7819 41.1915i 0.908660 1.57384i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 42.4580 + 21.4736i 1.61752 + 0.818079i
\(690\) 0 0
\(691\) −2.43312 −0.0925602 −0.0462801 0.998929i \(-0.514737\pi\)
−0.0462801 + 0.998929i \(0.514737\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −14.2128 24.6173i −0.539122 0.933786i
\(696\) 0 0
\(697\) −17.4640 30.2485i −0.661496 1.14574i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −0.254890 −0.00962706 −0.00481353 0.999988i \(-0.501532\pi\)
−0.00481353 + 0.999988i \(0.501532\pi\)
\(702\) 0 0
\(703\) −2.06159 −0.0777544
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 3.77353 + 6.53594i 0.141918 + 0.245809i
\(708\) 0 0
\(709\) −6.06672 10.5079i −0.227840 0.394631i 0.729327 0.684165i \(-0.239833\pi\)
−0.957168 + 0.289534i \(0.906500\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 5.33228 0.199696
\(714\) 0 0
\(715\) 5.12106 + 92.4215i 0.191517 + 3.45637i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −26.3387 + 45.6200i −0.982268 + 1.70134i −0.328771 + 0.944410i \(0.606635\pi\)
−0.653497 + 0.756929i \(0.726699\pi\)
\(720\) 0 0
\(721\) 2.68006 4.64200i 0.0998107 0.172877i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 38.5935 66.8459i 1.43333 2.48259i
\(726\) 0 0
\(727\) −1.58322 + 2.74222i −0.0587184 + 0.101703i −0.893890 0.448286i \(-0.852035\pi\)
0.835172 + 0.549989i \(0.185368\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 5.55873 0.205597
\(732\) 0 0
\(733\) 11.4180 + 19.7766i 0.421734 + 0.730466i 0.996109 0.0881269i \(-0.0280881\pi\)
−0.574375 + 0.818592i \(0.694755\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −23.4016 + 40.5327i −0.862009 + 1.49304i
\(738\) 0 0
\(739\) 10.9208 + 18.9154i 0.401728 + 0.695813i 0.993935 0.109973i \(-0.0350765\pi\)
−0.592207 + 0.805786i \(0.701743\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −5.45458 + 9.44761i −0.200109 + 0.346599i −0.948563 0.316587i \(-0.897463\pi\)
0.748454 + 0.663186i \(0.230796\pi\)
\(744\) 0 0
\(745\) 18.5010 + 32.0447i 0.677824 + 1.17403i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 3.65639 6.33306i 0.133602 0.231405i
\(750\) 0 0
\(751\) 14.6250 25.3313i 0.533674 0.924351i −0.465552 0.885020i \(-0.654144\pi\)
0.999226 0.0393303i \(-0.0125224\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −1.50856 −0.0549020
\(756\) 0 0
\(757\) −15.6746 27.1492i −0.569703 0.986755i −0.996595 0.0824524i \(-0.973725\pi\)
0.426892 0.904303i \(-0.359609\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −23.3290 −0.845676 −0.422838 0.906205i \(-0.638966\pi\)
−0.422838 + 0.906205i \(0.638966\pi\)
\(762\) 0 0
\(763\) −0.341763 0.591950i −0.0123726 0.0214300i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 33.6159 + 17.0016i 1.21380 + 0.613892i
\(768\) 0 0
\(769\) −4.10976 + 7.11832i −0.148202 + 0.256693i −0.930563 0.366132i \(-0.880682\pi\)
0.782361 + 0.622825i \(0.214015\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 19.9461 34.5476i 0.717411 1.24259i −0.244611 0.969621i \(-0.578660\pi\)
0.962022 0.272971i \(-0.0880064\pi\)
\(774\) 0 0
\(775\) −43.4252 −1.55988
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −2.46862 4.27577i −0.0884474 0.153195i
\(780\) 0 0
\(781\) 8.60286 14.9006i 0.307834 0.533185i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −2.78969 + 4.83189i −0.0995683 + 0.172457i
\(786\) 0 0
\(787\) 42.0152 1.49768 0.748841 0.662750i \(-0.230611\pi\)
0.748841 + 0.662750i \(0.230611\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 3.76665 + 6.52403i 0.133927 + 0.231968i
\(792\) 0 0
\(793\) 1.14960 + 20.7472i 0.0408235 + 0.736755i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 28.4690 1.00842 0.504212 0.863580i \(-0.331783\pi\)
0.504212 + 0.863580i \(0.331783\pi\)
\(798\) 0 0
\(799\) −18.4628 31.9785i −0.653167 1.13132i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −9.17673 −0.323840
\(804\) 0 0
\(805\) −3.54547 6.14093i −0.124961 0.216439i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 25.8229 + 44.7266i 0.907885 + 1.57250i 0.816997 + 0.576643i \(0.195637\pi\)
0.0908889 + 0.995861i \(0.471029\pi\)
\(810\) 0 0
\(811\) −14.1240 −0.495959 −0.247980 0.968765i \(-0.579767\pi\)
−0.247980 + 0.968765i \(0.579767\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 69.3778 2.43020
\(816\) 0 0
\(817\) 0.785752 0.0274900
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 22.6148 0.789263 0.394632 0.918839i \(-0.370872\pi\)
0.394632 + 0.918839i \(0.370872\pi\)
\(822\) 0 0
\(823\) −4.24926 −0.148120 −0.0740600 0.997254i \(-0.523596\pi\)
−0.0740600 + 0.997254i \(0.523596\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 4.50665 0.156711 0.0783557 0.996925i \(-0.475033\pi\)
0.0783557 + 0.996925i \(0.475033\pi\)
\(828\) 0 0
\(829\) 4.99777 + 8.65638i 0.173580 + 0.300649i 0.939669 0.342086i \(-0.111133\pi\)
−0.766089 + 0.642734i \(0.777800\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −13.4298 23.2611i −0.465314 0.805948i
\(834\) 0 0
\(835\) −12.7992 −0.442936
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 4.63767 + 8.03268i 0.160110 + 0.277319i 0.934908 0.354890i \(-0.115482\pi\)
−0.774798 + 0.632209i \(0.782148\pi\)
\(840\) 0 0
\(841\) 15.9303 0.549319
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 21.1989 48.3910i 0.729263 1.66470i
\(846\) 0 0
\(847\) 17.8355 + 30.8921i 0.612837 + 1.06146i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −4.20535 −0.144157
\(852\) 0 0
\(853\) 8.60320 14.9012i 0.294568 0.510207i −0.680316 0.732919i \(-0.738158\pi\)
0.974884 + 0.222712i \(0.0714909\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −10.2451 + 17.7450i −0.349964 + 0.606156i −0.986243 0.165303i \(-0.947140\pi\)
0.636278 + 0.771460i \(0.280473\pi\)
\(858\) 0 0
\(859\) 8.09018 + 14.0126i 0.276034 + 0.478104i 0.970395 0.241522i \(-0.0776466\pi\)
−0.694362 + 0.719626i \(0.744313\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 26.3268 0.896176 0.448088 0.893989i \(-0.352105\pi\)
0.448088 + 0.893989i \(0.352105\pi\)
\(864\) 0 0
\(865\) 17.8865 30.9804i 0.608160 1.05336i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 23.6176 40.9070i 0.801174 1.38767i
\(870\) 0 0
\(871\) 22.3598 14.6159i 0.757632 0.495242i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 16.3366 + 28.2957i 0.552276 + 0.956571i
\(876\) 0 0
\(877\) −33.4379 −1.12912 −0.564559 0.825393i \(-0.690954\pi\)
−0.564559 + 0.825393i \(0.690954\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1.74235 + 3.01783i 0.0587011 + 0.101673i 0.893883 0.448301i \(-0.147971\pi\)
−0.835181 + 0.549974i \(0.814637\pi\)
\(882\) 0 0
\(883\) −21.7609 −0.732313 −0.366156 0.930553i \(-0.619326\pi\)
−0.366156 + 0.930553i \(0.619326\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −17.4467 + 30.2185i −0.585802 + 1.01464i 0.408973 + 0.912546i \(0.365887\pi\)
−0.994775 + 0.102092i \(0.967446\pi\)
\(888\) 0 0
\(889\) −5.43493 + 9.41358i −0.182282 + 0.315721i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −2.60980 4.52031i −0.0873337 0.151266i
\(894\) 0 0
\(895\) 44.0485 76.2942i 1.47238 2.55023i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −12.6388 21.8911i −0.421528 0.730108i
\(900\) 0 0
\(901\) −32.3559 + 56.0421i −1.07793 + 1.86703i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −35.2821 61.1104i −1.17282 2.03138i
\(906\) 0 0
\(907\) 18.0350 0.598841 0.299420 0.954121i \(-0.403207\pi\)
0.299420 + 0.954121i \(0.403207\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 25.8853 44.8346i 0.857617 1.48544i −0.0165778 0.999863i \(-0.505277\pi\)
0.874195 0.485574i \(-0.161390\pi\)
\(912\) 0 0
\(913\) −25.4055 + 44.0037i −0.840800 + 1.45631i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 7.05239 12.2151i 0.232890 0.403378i
\(918\) 0 0
\(919\) 25.9608 44.9655i 0.856369 1.48327i −0.0190005 0.999819i \(-0.506048\pi\)
0.875369 0.483455i \(-0.160618\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −8.21987 + 5.37309i −0.270560 + 0.176858i
\(924\) 0 0
\(925\) 34.2476 1.12605
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −20.8219 36.0645i −0.683144 1.18324i −0.974016 0.226478i \(-0.927279\pi\)
0.290873 0.956762i \(-0.406054\pi\)
\(930\) 0 0
\(931\) −1.89836 3.28806i −0.0622163 0.107762i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −125.894 −4.11716
\(936\) 0 0
\(937\) 24.2358 0.791749 0.395875 0.918305i \(-0.370441\pi\)
0.395875 + 0.918305i \(0.370441\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −0.333504 0.577647i −0.0108719 0.0188307i 0.860538 0.509386i \(-0.170127\pi\)
−0.871410 + 0.490555i \(0.836794\pi\)
\(942\) 0 0
\(943\) −5.03562 8.72195i −0.163982 0.284026i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 12.5570 0.408048 0.204024 0.978966i \(-0.434598\pi\)
0.204024 + 0.978966i \(0.434598\pi\)
\(948\) 0 0
\(949\) 4.67387 + 2.36386i 0.151720 + 0.0767341i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −3.43257 + 5.94539i −0.111192 + 0.192590i −0.916251 0.400604i \(-0.868800\pi\)
0.805059 + 0.593194i \(0.202133\pi\)
\(954\) 0 0
\(955\) 4.55054 7.88177i 0.147252 0.255048i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −7.22135 + 12.5077i −0.233190 + 0.403896i
\(960\) 0 0
\(961\) 8.38944 14.5309i 0.270627 0.468740i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −76.8190 −2.47289
\(966\) 0 0
\(967\) −22.6585 39.2457i −0.728648 1.26206i −0.957455 0.288583i \(-0.906816\pi\)
0.228807 0.973472i \(-0.426518\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −22.8736 + 39.6183i −0.734049 + 1.27141i 0.221090 + 0.975253i \(0.429039\pi\)
−0.955139 + 0.296157i \(0.904295\pi\)
\(972\) 0 0
\(973\) 4.31570 + 7.47501i 0.138355 + 0.239638i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −9.81204 + 16.9950i −0.313915 + 0.543717i −0.979206 0.202867i \(-0.934974\pi\)
0.665291 + 0.746584i \(0.268307\pi\)
\(978\) 0 0
\(979\) −42.6797 73.9235i −1.36405 2.36260i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −21.4131 + 37.0886i −0.682972 + 1.18294i 0.291098 + 0.956693i \(0.405980\pi\)
−0.974070 + 0.226249i \(0.927354\pi\)
\(984\) 0 0
\(985\) −16.6516 + 28.8415i −0.530565 + 0.918965i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.60282 0.0509667
\(990\) 0 0
\(991\) 24.4276 + 42.3099i 0.775969 + 1.34402i 0.934248 + 0.356623i \(0.116072\pi\)
−0.158279 + 0.987394i \(0.550595\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 6.22294 0.197280
\(996\) 0 0
\(997\) −8.51282 14.7446i −0.269604 0.466968i 0.699156 0.714969i \(-0.253559\pi\)
−0.968760 + 0.248002i \(0.920226\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1404.2.j.a.289.1 28
3.2 odd 2 468.2.j.a.133.3 28
9.4 even 3 1404.2.k.a.1225.1 28
9.5 odd 6 468.2.k.a.445.7 yes 28
13.9 even 3 1404.2.k.a.1153.1 28
39.35 odd 6 468.2.k.a.61.7 yes 28
117.22 even 3 inner 1404.2.j.a.685.1 28
117.113 odd 6 468.2.j.a.373.3 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
468.2.j.a.133.3 28 3.2 odd 2
468.2.j.a.373.3 yes 28 117.113 odd 6
468.2.k.a.61.7 yes 28 39.35 odd 6
468.2.k.a.445.7 yes 28 9.5 odd 6
1404.2.j.a.289.1 28 1.1 even 1 trivial
1404.2.j.a.685.1 28 117.22 even 3 inner
1404.2.k.a.1153.1 28 13.9 even 3
1404.2.k.a.1225.1 28 9.4 even 3