Properties

Label 1395.2.j
Level $1395$
Weight $2$
Character orbit 1395.j
Rep. character $\chi_{1395}(211,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $256$
Sturm bound $384$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1395 = 3^{2} \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1395.j (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 279 \)
Character field: \(\Q(\zeta_{3})\)
Sturm bound: \(384\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1395, [\chi])\).

Total New Old
Modular forms 392 256 136
Cusp forms 376 256 120
Eisenstein series 16 0 16

Trace form

\( 256 q - 128 q^{4} + 6 q^{6} + 2 q^{7} + 12 q^{8} - 12 q^{12} - 4 q^{13} - 128 q^{16} - 16 q^{17} - 10 q^{18} - 4 q^{19} + 14 q^{21} - 30 q^{23} + 12 q^{24} - 128 q^{25} - 32 q^{26} + 18 q^{27} + 8 q^{28}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1395, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1395, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1395, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(279, [\chi])\)\(^{\oplus 2}\)