Properties

Label 1392.2.a
Level $1392$
Weight $2$
Character orbit 1392.a
Rep. character $\chi_{1392}(1,\cdot)$
Character field $\Q$
Dimension $28$
Newform subspaces $21$
Sturm bound $480$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1392 = 2^{4} \cdot 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1392.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 21 \)
Sturm bound: \(480\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1392))\).

Total New Old
Modular forms 252 28 224
Cusp forms 229 28 201
Eisenstein series 23 0 23

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(29\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(24\)\(4\)\(20\)\(22\)\(4\)\(18\)\(2\)\(0\)\(2\)
\(+\)\(+\)\(-\)\(-\)\(39\)\(4\)\(35\)\(36\)\(4\)\(32\)\(3\)\(0\)\(3\)
\(+\)\(-\)\(+\)\(-\)\(33\)\(3\)\(30\)\(30\)\(3\)\(27\)\(3\)\(0\)\(3\)
\(+\)\(-\)\(-\)\(+\)\(30\)\(3\)\(27\)\(27\)\(3\)\(24\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(+\)\(-\)\(33\)\(5\)\(28\)\(30\)\(5\)\(25\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(-\)\(+\)\(30\)\(2\)\(28\)\(27\)\(2\)\(25\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(+\)\(+\)\(36\)\(2\)\(34\)\(33\)\(2\)\(31\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(-\)\(-\)\(27\)\(5\)\(22\)\(24\)\(5\)\(19\)\(3\)\(0\)\(3\)
Plus space\(+\)\(120\)\(11\)\(109\)\(109\)\(11\)\(98\)\(11\)\(0\)\(11\)
Minus space\(-\)\(132\)\(17\)\(115\)\(120\)\(17\)\(103\)\(12\)\(0\)\(12\)

Trace form

\( 28 q - 2 q^{3} - 4 q^{7} + 28 q^{9} + 4 q^{15} - 8 q^{19} - 24 q^{23} + 28 q^{25} - 2 q^{27} + 16 q^{31} + 4 q^{39} + 16 q^{41} + 36 q^{49} + 8 q^{51} + 8 q^{55} - 8 q^{57} + 8 q^{59} - 16 q^{61} - 4 q^{63}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1392))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 29
1392.2.a.a 1392.a 1.a $1$ $11.115$ \(\Q\) None 348.2.a.c \(0\) \(-1\) \(-4\) \(3\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-4q^{5}+3q^{7}+q^{9}+q^{11}-3q^{13}+\cdots\)
1392.2.a.b 1392.a 1.a $1$ $11.115$ \(\Q\) None 174.2.a.b \(0\) \(-1\) \(-3\) \(-5\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-3q^{5}-5q^{7}+q^{9}-6q^{11}+\cdots\)
1392.2.a.c 1392.a 1.a $1$ $11.115$ \(\Q\) None 696.2.a.e \(0\) \(-1\) \(-3\) \(-1\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-3q^{5}-q^{7}+q^{9}+2q^{11}+4q^{13}+\cdots\)
1392.2.a.d 1392.a 1.a $1$ $11.115$ \(\Q\) None 696.2.a.f \(0\) \(-1\) \(-2\) \(1\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-2q^{5}+q^{7}+q^{9}+3q^{11}-7q^{13}+\cdots\)
1392.2.a.e 1392.a 1.a $1$ $11.115$ \(\Q\) None 174.2.a.e \(0\) \(-1\) \(-1\) \(-1\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{5}-q^{7}+q^{9}+2q^{11}+q^{15}+\cdots\)
1392.2.a.f 1392.a 1.a $1$ $11.115$ \(\Q\) None 696.2.a.g \(0\) \(-1\) \(0\) \(5\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+5q^{7}+q^{9}+5q^{11}+q^{13}+\cdots\)
1392.2.a.g 1392.a 1.a $1$ $11.115$ \(\Q\) None 348.2.a.d \(0\) \(-1\) \(2\) \(-1\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+2q^{5}-q^{7}+q^{9}-q^{11}-3q^{13}+\cdots\)
1392.2.a.h 1392.a 1.a $1$ $11.115$ \(\Q\) None 174.2.a.c \(0\) \(-1\) \(2\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+2q^{5}+q^{9}+4q^{11}+6q^{13}+\cdots\)
1392.2.a.i 1392.a 1.a $1$ $11.115$ \(\Q\) None 696.2.a.a \(0\) \(1\) \(-2\) \(-3\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-2q^{5}-3q^{7}+q^{9}+5q^{11}+\cdots\)
1392.2.a.j 1392.a 1.a $1$ $11.115$ \(\Q\) None 348.2.a.a \(0\) \(1\) \(-2\) \(-1\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-2q^{5}-q^{7}+q^{9}-3q^{11}+5q^{13}+\cdots\)
1392.2.a.k 1392.a 1.a $1$ $11.115$ \(\Q\) None 696.2.a.b \(0\) \(1\) \(0\) \(1\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{7}+q^{9}+3q^{11}+q^{13}-q^{17}+\cdots\)
1392.2.a.l 1392.a 1.a $1$ $11.115$ \(\Q\) None 348.2.a.b \(0\) \(1\) \(0\) \(3\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+3q^{7}+q^{9}+3q^{11}-3q^{13}+\cdots\)
1392.2.a.m 1392.a 1.a $1$ $11.115$ \(\Q\) None 174.2.a.d \(0\) \(1\) \(1\) \(-1\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{5}-q^{7}+q^{9}-6q^{11}-4q^{13}+\cdots\)
1392.2.a.n 1392.a 1.a $1$ $11.115$ \(\Q\) None 696.2.a.c \(0\) \(1\) \(1\) \(3\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{5}+3q^{7}+q^{9}+2q^{11}+4q^{13}+\cdots\)
1392.2.a.o 1392.a 1.a $1$ $11.115$ \(\Q\) None 174.2.a.a \(0\) \(1\) \(3\) \(3\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+3q^{5}+3q^{7}+q^{9}-6q^{11}+\cdots\)
1392.2.a.p 1392.a 1.a $1$ $11.115$ \(\Q\) None 696.2.a.d \(0\) \(1\) \(4\) \(-3\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+4q^{5}-3q^{7}+q^{9}-q^{11}+q^{13}+\cdots\)
1392.2.a.q 1392.a 1.a $2$ $11.115$ \(\Q(\sqrt{5}) \) None 87.2.a.a \(0\) \(-2\) \(2\) \(4\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+(1+\beta )q^{5}+(2-\beta )q^{7}+q^{9}+\cdots\)
1392.2.a.r 1392.a 1.a $2$ $11.115$ \(\Q(\sqrt{41}) \) None 696.2.a.i \(0\) \(-2\) \(4\) \(-3\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+2q^{5}+(-2+\beta )q^{7}+q^{9}+(-2+\cdots)q^{11}+\cdots\)
1392.2.a.s 1392.a 1.a $2$ $11.115$ \(\Q(\sqrt{17}) \) None 696.2.a.h \(0\) \(2\) \(-3\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+(-1-\beta )q^{5}+(-1+2\beta )q^{7}+\cdots\)
1392.2.a.t 1392.a 1.a $3$ $11.115$ 3.3.961.1 None 696.2.a.j \(0\) \(-3\) \(1\) \(-4\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+\beta _{1}q^{5}+(-1+\beta _{2})q^{7}+q^{9}+\cdots\)
1392.2.a.u 1392.a 1.a $3$ $11.115$ 3.3.229.1 None 87.2.a.b \(0\) \(3\) \(0\) \(-4\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+(-\beta _{1}+\beta _{2})q^{5}+(-1+\beta _{2})q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1392))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(1392)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(29))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(58))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(87))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(116))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(174))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(232))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(348))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(464))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(696))\)\(^{\oplus 2}\)