Defining parameters
| Level: | \( N \) | \(=\) | \( 1392 = 2^{4} \cdot 3 \cdot 29 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1392.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 21 \) | ||
| Sturm bound: | \(480\) | ||
| Trace bound: | \(7\) | ||
| Distinguishing \(T_p\): | \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1392))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 252 | 28 | 224 |
| Cusp forms | 229 | 28 | 201 |
| Eisenstein series | 23 | 0 | 23 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(29\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(24\) | \(4\) | \(20\) | \(22\) | \(4\) | \(18\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(39\) | \(4\) | \(35\) | \(36\) | \(4\) | \(32\) | \(3\) | \(0\) | \(3\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(33\) | \(3\) | \(30\) | \(30\) | \(3\) | \(27\) | \(3\) | \(0\) | \(3\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(30\) | \(3\) | \(27\) | \(27\) | \(3\) | \(24\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(33\) | \(5\) | \(28\) | \(30\) | \(5\) | \(25\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(30\) | \(2\) | \(28\) | \(27\) | \(2\) | \(25\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(36\) | \(2\) | \(34\) | \(33\) | \(2\) | \(31\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(27\) | \(5\) | \(22\) | \(24\) | \(5\) | \(19\) | \(3\) | \(0\) | \(3\) | |||
| Plus space | \(+\) | \(120\) | \(11\) | \(109\) | \(109\) | \(11\) | \(98\) | \(11\) | \(0\) | \(11\) | |||||
| Minus space | \(-\) | \(132\) | \(17\) | \(115\) | \(120\) | \(17\) | \(103\) | \(12\) | \(0\) | \(12\) | |||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1392))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1392))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1392)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(29))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(58))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(87))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(116))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(174))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(232))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(348))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(464))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(696))\)\(^{\oplus 2}\)