Properties

Label 1380.4.p
Level $1380$
Weight $4$
Character orbit 1380.p
Rep. character $\chi_{1380}(91,\cdot)$
Character field $\Q$
Dimension $288$
Sturm bound $1152$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1380 = 2^{2} \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1380.p (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 92 \)
Character field: \(\Q\)
Sturm bound: \(1152\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(1380, [\chi])\).

Total New Old
Modular forms 872 288 584
Cusp forms 856 288 568
Eisenstein series 16 0 16

Trace form

\( 288 q + 8 q^{2} - 52 q^{4} - 12 q^{6} - 136 q^{8} - 2592 q^{9} - 12 q^{16} - 72 q^{18} + 228 q^{24} - 7200 q^{25} + 1000 q^{26} - 1600 q^{29} - 992 q^{32} + 468 q^{36} + 592 q^{41} + 680 q^{46} - 1248 q^{48}+ \cdots + 5520 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(1380, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(1380, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(1380, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(92, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(276, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(460, [\chi])\)\(^{\oplus 2}\)