Properties

Label 1380.4.a.e.1.5
Level $1380$
Weight $4$
Character 1380.1
Self dual yes
Analytic conductor $81.423$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1380,4,Mod(1,1380)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1380.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1380, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1380 = 2^{2} \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1380.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,-15,0,-25] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(81.4226358079\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 278x^{3} + 216x^{2} + 14064x - 33408 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-9.25159\) of defining polynomial
Character \(\chi\) \(=\) 1380.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} -5.00000 q^{5} +21.4978 q^{7} +9.00000 q^{9} +40.0214 q^{11} -13.4882 q^{13} +15.0000 q^{15} +118.546 q^{17} +81.5201 q^{19} -64.4934 q^{21} +23.0000 q^{23} +25.0000 q^{25} -27.0000 q^{27} -98.5712 q^{29} +41.9361 q^{31} -120.064 q^{33} -107.489 q^{35} -60.8785 q^{37} +40.4645 q^{39} +38.6716 q^{41} +141.524 q^{43} -45.0000 q^{45} -212.948 q^{47} +119.156 q^{49} -355.637 q^{51} -290.961 q^{53} -200.107 q^{55} -244.560 q^{57} +734.568 q^{59} -322.242 q^{61} +193.480 q^{63} +67.4408 q^{65} +833.176 q^{67} -69.0000 q^{69} -780.428 q^{71} -201.464 q^{73} -75.0000 q^{75} +860.371 q^{77} +6.04147 q^{79} +81.0000 q^{81} +195.200 q^{83} -592.729 q^{85} +295.713 q^{87} +224.630 q^{89} -289.966 q^{91} -125.808 q^{93} -407.601 q^{95} -877.289 q^{97} +360.192 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 15 q^{3} - 25 q^{5} - 7 q^{7} + 45 q^{9} + 64 q^{11} + 80 q^{13} + 75 q^{15} - 21 q^{17} - 52 q^{19} + 21 q^{21} + 115 q^{23} + 125 q^{25} - 135 q^{27} - 277 q^{29} - 289 q^{31} - 192 q^{33} + 35 q^{35}+ \cdots + 576 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) 21.4978 1.16077 0.580386 0.814341i \(-0.302902\pi\)
0.580386 + 0.814341i \(0.302902\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 40.0214 1.09699 0.548495 0.836154i \(-0.315201\pi\)
0.548495 + 0.836154i \(0.315201\pi\)
\(12\) 0 0
\(13\) −13.4882 −0.287765 −0.143882 0.989595i \(-0.545959\pi\)
−0.143882 + 0.989595i \(0.545959\pi\)
\(14\) 0 0
\(15\) 15.0000 0.258199
\(16\) 0 0
\(17\) 118.546 1.69127 0.845634 0.533763i \(-0.179222\pi\)
0.845634 + 0.533763i \(0.179222\pi\)
\(18\) 0 0
\(19\) 81.5201 0.984316 0.492158 0.870506i \(-0.336208\pi\)
0.492158 + 0.870506i \(0.336208\pi\)
\(20\) 0 0
\(21\) −64.4934 −0.670172
\(22\) 0 0
\(23\) 23.0000 0.208514
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) −98.5712 −0.631179 −0.315590 0.948896i \(-0.602202\pi\)
−0.315590 + 0.948896i \(0.602202\pi\)
\(30\) 0 0
\(31\) 41.9361 0.242966 0.121483 0.992594i \(-0.461235\pi\)
0.121483 + 0.992594i \(0.461235\pi\)
\(32\) 0 0
\(33\) −120.064 −0.633348
\(34\) 0 0
\(35\) −107.489 −0.519113
\(36\) 0 0
\(37\) −60.8785 −0.270496 −0.135248 0.990812i \(-0.543183\pi\)
−0.135248 + 0.990812i \(0.543183\pi\)
\(38\) 0 0
\(39\) 40.4645 0.166141
\(40\) 0 0
\(41\) 38.6716 0.147305 0.0736523 0.997284i \(-0.476534\pi\)
0.0736523 + 0.997284i \(0.476534\pi\)
\(42\) 0 0
\(43\) 141.524 0.501912 0.250956 0.967998i \(-0.419255\pi\)
0.250956 + 0.967998i \(0.419255\pi\)
\(44\) 0 0
\(45\) −45.0000 −0.149071
\(46\) 0 0
\(47\) −212.948 −0.660888 −0.330444 0.943826i \(-0.607198\pi\)
−0.330444 + 0.943826i \(0.607198\pi\)
\(48\) 0 0
\(49\) 119.156 0.347392
\(50\) 0 0
\(51\) −355.637 −0.976454
\(52\) 0 0
\(53\) −290.961 −0.754086 −0.377043 0.926196i \(-0.623059\pi\)
−0.377043 + 0.926196i \(0.623059\pi\)
\(54\) 0 0
\(55\) −200.107 −0.490589
\(56\) 0 0
\(57\) −244.560 −0.568295
\(58\) 0 0
\(59\) 734.568 1.62089 0.810446 0.585813i \(-0.199225\pi\)
0.810446 + 0.585813i \(0.199225\pi\)
\(60\) 0 0
\(61\) −322.242 −0.676375 −0.338188 0.941079i \(-0.609814\pi\)
−0.338188 + 0.941079i \(0.609814\pi\)
\(62\) 0 0
\(63\) 193.480 0.386924
\(64\) 0 0
\(65\) 67.4408 0.128692
\(66\) 0 0
\(67\) 833.176 1.51923 0.759617 0.650371i \(-0.225387\pi\)
0.759617 + 0.650371i \(0.225387\pi\)
\(68\) 0 0
\(69\) −69.0000 −0.120386
\(70\) 0 0
\(71\) −780.428 −1.30450 −0.652252 0.758003i \(-0.726175\pi\)
−0.652252 + 0.758003i \(0.726175\pi\)
\(72\) 0 0
\(73\) −201.464 −0.323008 −0.161504 0.986872i \(-0.551635\pi\)
−0.161504 + 0.986872i \(0.551635\pi\)
\(74\) 0 0
\(75\) −75.0000 −0.115470
\(76\) 0 0
\(77\) 860.371 1.27336
\(78\) 0 0
\(79\) 6.04147 0.00860402 0.00430201 0.999991i \(-0.498631\pi\)
0.00430201 + 0.999991i \(0.498631\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 195.200 0.258144 0.129072 0.991635i \(-0.458800\pi\)
0.129072 + 0.991635i \(0.458800\pi\)
\(84\) 0 0
\(85\) −592.729 −0.756358
\(86\) 0 0
\(87\) 295.713 0.364412
\(88\) 0 0
\(89\) 224.630 0.267536 0.133768 0.991013i \(-0.457292\pi\)
0.133768 + 0.991013i \(0.457292\pi\)
\(90\) 0 0
\(91\) −289.966 −0.334030
\(92\) 0 0
\(93\) −125.808 −0.140276
\(94\) 0 0
\(95\) −407.601 −0.440199
\(96\) 0 0
\(97\) −877.289 −0.918301 −0.459150 0.888359i \(-0.651846\pi\)
−0.459150 + 0.888359i \(0.651846\pi\)
\(98\) 0 0
\(99\) 360.192 0.365663
\(100\) 0 0
\(101\) −96.9440 −0.0955078 −0.0477539 0.998859i \(-0.515206\pi\)
−0.0477539 + 0.998859i \(0.515206\pi\)
\(102\) 0 0
\(103\) −841.448 −0.804955 −0.402477 0.915430i \(-0.631851\pi\)
−0.402477 + 0.915430i \(0.631851\pi\)
\(104\) 0 0
\(105\) 322.467 0.299710
\(106\) 0 0
\(107\) 931.011 0.841161 0.420581 0.907255i \(-0.361826\pi\)
0.420581 + 0.907255i \(0.361826\pi\)
\(108\) 0 0
\(109\) −121.322 −0.106610 −0.0533051 0.998578i \(-0.516976\pi\)
−0.0533051 + 0.998578i \(0.516976\pi\)
\(110\) 0 0
\(111\) 182.636 0.156171
\(112\) 0 0
\(113\) −39.6067 −0.0329724 −0.0164862 0.999864i \(-0.505248\pi\)
−0.0164862 + 0.999864i \(0.505248\pi\)
\(114\) 0 0
\(115\) −115.000 −0.0932505
\(116\) 0 0
\(117\) −121.394 −0.0959217
\(118\) 0 0
\(119\) 2548.47 1.96318
\(120\) 0 0
\(121\) 270.709 0.203388
\(122\) 0 0
\(123\) −116.015 −0.0850464
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) −1057.70 −0.739024 −0.369512 0.929226i \(-0.620475\pi\)
−0.369512 + 0.929226i \(0.620475\pi\)
\(128\) 0 0
\(129\) −424.573 −0.289779
\(130\) 0 0
\(131\) 1898.22 1.26602 0.633009 0.774145i \(-0.281820\pi\)
0.633009 + 0.774145i \(0.281820\pi\)
\(132\) 0 0
\(133\) 1752.50 1.14257
\(134\) 0 0
\(135\) 135.000 0.0860663
\(136\) 0 0
\(137\) 1927.92 1.20229 0.601143 0.799142i \(-0.294712\pi\)
0.601143 + 0.799142i \(0.294712\pi\)
\(138\) 0 0
\(139\) 998.157 0.609083 0.304541 0.952499i \(-0.401497\pi\)
0.304541 + 0.952499i \(0.401497\pi\)
\(140\) 0 0
\(141\) 638.845 0.381564
\(142\) 0 0
\(143\) −539.815 −0.315675
\(144\) 0 0
\(145\) 492.856 0.282272
\(146\) 0 0
\(147\) −357.467 −0.200567
\(148\) 0 0
\(149\) 3050.98 1.67749 0.838746 0.544523i \(-0.183289\pi\)
0.838746 + 0.544523i \(0.183289\pi\)
\(150\) 0 0
\(151\) −377.639 −0.203522 −0.101761 0.994809i \(-0.532448\pi\)
−0.101761 + 0.994809i \(0.532448\pi\)
\(152\) 0 0
\(153\) 1066.91 0.563756
\(154\) 0 0
\(155\) −209.680 −0.108658
\(156\) 0 0
\(157\) −1032.60 −0.524908 −0.262454 0.964944i \(-0.584532\pi\)
−0.262454 + 0.964944i \(0.584532\pi\)
\(158\) 0 0
\(159\) 872.883 0.435372
\(160\) 0 0
\(161\) 494.449 0.242038
\(162\) 0 0
\(163\) 2808.91 1.34976 0.674880 0.737928i \(-0.264195\pi\)
0.674880 + 0.737928i \(0.264195\pi\)
\(164\) 0 0
\(165\) 600.320 0.283242
\(166\) 0 0
\(167\) −1611.25 −0.746598 −0.373299 0.927711i \(-0.621773\pi\)
−0.373299 + 0.927711i \(0.621773\pi\)
\(168\) 0 0
\(169\) −2015.07 −0.917191
\(170\) 0 0
\(171\) 733.681 0.328105
\(172\) 0 0
\(173\) 1960.56 0.861608 0.430804 0.902445i \(-0.358230\pi\)
0.430804 + 0.902445i \(0.358230\pi\)
\(174\) 0 0
\(175\) 537.445 0.232154
\(176\) 0 0
\(177\) −2203.70 −0.935823
\(178\) 0 0
\(179\) 3887.25 1.62317 0.811583 0.584238i \(-0.198606\pi\)
0.811583 + 0.584238i \(0.198606\pi\)
\(180\) 0 0
\(181\) −620.323 −0.254742 −0.127371 0.991855i \(-0.540654\pi\)
−0.127371 + 0.991855i \(0.540654\pi\)
\(182\) 0 0
\(183\) 966.726 0.390505
\(184\) 0 0
\(185\) 304.393 0.120970
\(186\) 0 0
\(187\) 4744.36 1.85531
\(188\) 0 0
\(189\) −580.441 −0.223391
\(190\) 0 0
\(191\) 1527.92 0.578831 0.289415 0.957204i \(-0.406539\pi\)
0.289415 + 0.957204i \(0.406539\pi\)
\(192\) 0 0
\(193\) 2413.46 0.900129 0.450065 0.892996i \(-0.351401\pi\)
0.450065 + 0.892996i \(0.351401\pi\)
\(194\) 0 0
\(195\) −202.323 −0.0743006
\(196\) 0 0
\(197\) 3301.20 1.19391 0.596956 0.802274i \(-0.296377\pi\)
0.596956 + 0.802274i \(0.296377\pi\)
\(198\) 0 0
\(199\) 1700.14 0.605628 0.302814 0.953050i \(-0.402074\pi\)
0.302814 + 0.953050i \(0.402074\pi\)
\(200\) 0 0
\(201\) −2499.53 −0.877130
\(202\) 0 0
\(203\) −2119.06 −0.732656
\(204\) 0 0
\(205\) −193.358 −0.0658766
\(206\) 0 0
\(207\) 207.000 0.0695048
\(208\) 0 0
\(209\) 3262.55 1.07979
\(210\) 0 0
\(211\) −530.027 −0.172932 −0.0864658 0.996255i \(-0.527557\pi\)
−0.0864658 + 0.996255i \(0.527557\pi\)
\(212\) 0 0
\(213\) 2341.28 0.753155
\(214\) 0 0
\(215\) −707.621 −0.224462
\(216\) 0 0
\(217\) 901.534 0.282028
\(218\) 0 0
\(219\) 604.393 0.186489
\(220\) 0 0
\(221\) −1598.96 −0.486688
\(222\) 0 0
\(223\) −5898.28 −1.77120 −0.885600 0.464448i \(-0.846253\pi\)
−0.885600 + 0.464448i \(0.846253\pi\)
\(224\) 0 0
\(225\) 225.000 0.0666667
\(226\) 0 0
\(227\) −2652.03 −0.775425 −0.387712 0.921780i \(-0.626735\pi\)
−0.387712 + 0.921780i \(0.626735\pi\)
\(228\) 0 0
\(229\) −725.753 −0.209428 −0.104714 0.994502i \(-0.533393\pi\)
−0.104714 + 0.994502i \(0.533393\pi\)
\(230\) 0 0
\(231\) −2581.11 −0.735172
\(232\) 0 0
\(233\) 1089.63 0.306369 0.153185 0.988198i \(-0.451047\pi\)
0.153185 + 0.988198i \(0.451047\pi\)
\(234\) 0 0
\(235\) 1064.74 0.295558
\(236\) 0 0
\(237\) −18.1244 −0.00496754
\(238\) 0 0
\(239\) −4485.55 −1.21400 −0.607000 0.794702i \(-0.707627\pi\)
−0.607000 + 0.794702i \(0.707627\pi\)
\(240\) 0 0
\(241\) 5351.32 1.43033 0.715164 0.698957i \(-0.246352\pi\)
0.715164 + 0.698957i \(0.246352\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) −595.778 −0.155359
\(246\) 0 0
\(247\) −1099.56 −0.283252
\(248\) 0 0
\(249\) −585.599 −0.149039
\(250\) 0 0
\(251\) 279.307 0.0702379 0.0351190 0.999383i \(-0.488819\pi\)
0.0351190 + 0.999383i \(0.488819\pi\)
\(252\) 0 0
\(253\) 920.491 0.228738
\(254\) 0 0
\(255\) 1778.19 0.436684
\(256\) 0 0
\(257\) 3616.08 0.877684 0.438842 0.898564i \(-0.355389\pi\)
0.438842 + 0.898564i \(0.355389\pi\)
\(258\) 0 0
\(259\) −1308.75 −0.313985
\(260\) 0 0
\(261\) −887.140 −0.210393
\(262\) 0 0
\(263\) 87.5237 0.0205207 0.0102603 0.999947i \(-0.496734\pi\)
0.0102603 + 0.999947i \(0.496734\pi\)
\(264\) 0 0
\(265\) 1454.80 0.337237
\(266\) 0 0
\(267\) −673.890 −0.154462
\(268\) 0 0
\(269\) −142.638 −0.0323302 −0.0161651 0.999869i \(-0.505146\pi\)
−0.0161651 + 0.999869i \(0.505146\pi\)
\(270\) 0 0
\(271\) 5707.35 1.27932 0.639662 0.768657i \(-0.279075\pi\)
0.639662 + 0.768657i \(0.279075\pi\)
\(272\) 0 0
\(273\) 869.898 0.192852
\(274\) 0 0
\(275\) 1000.53 0.219398
\(276\) 0 0
\(277\) 4660.87 1.01099 0.505495 0.862829i \(-0.331310\pi\)
0.505495 + 0.862829i \(0.331310\pi\)
\(278\) 0 0
\(279\) 377.425 0.0809886
\(280\) 0 0
\(281\) −368.325 −0.0781937 −0.0390969 0.999235i \(-0.512448\pi\)
−0.0390969 + 0.999235i \(0.512448\pi\)
\(282\) 0 0
\(283\) −6908.39 −1.45110 −0.725550 0.688169i \(-0.758415\pi\)
−0.725550 + 0.688169i \(0.758415\pi\)
\(284\) 0 0
\(285\) 1222.80 0.254149
\(286\) 0 0
\(287\) 831.355 0.170987
\(288\) 0 0
\(289\) 9140.10 1.86039
\(290\) 0 0
\(291\) 2631.87 0.530181
\(292\) 0 0
\(293\) −5388.52 −1.07440 −0.537202 0.843454i \(-0.680519\pi\)
−0.537202 + 0.843454i \(0.680519\pi\)
\(294\) 0 0
\(295\) −3672.84 −0.724885
\(296\) 0 0
\(297\) −1080.58 −0.211116
\(298\) 0 0
\(299\) −310.228 −0.0600031
\(300\) 0 0
\(301\) 3042.46 0.582606
\(302\) 0 0
\(303\) 290.832 0.0551414
\(304\) 0 0
\(305\) 1611.21 0.302484
\(306\) 0 0
\(307\) 1309.23 0.243394 0.121697 0.992567i \(-0.461166\pi\)
0.121697 + 0.992567i \(0.461166\pi\)
\(308\) 0 0
\(309\) 2524.34 0.464741
\(310\) 0 0
\(311\) −2818.70 −0.513936 −0.256968 0.966420i \(-0.582723\pi\)
−0.256968 + 0.966420i \(0.582723\pi\)
\(312\) 0 0
\(313\) 4557.17 0.822959 0.411480 0.911419i \(-0.365012\pi\)
0.411480 + 0.911419i \(0.365012\pi\)
\(314\) 0 0
\(315\) −967.401 −0.173038
\(316\) 0 0
\(317\) 5128.87 0.908726 0.454363 0.890817i \(-0.349867\pi\)
0.454363 + 0.890817i \(0.349867\pi\)
\(318\) 0 0
\(319\) −3944.95 −0.692398
\(320\) 0 0
\(321\) −2793.03 −0.485645
\(322\) 0 0
\(323\) 9663.87 1.66474
\(324\) 0 0
\(325\) −337.204 −0.0575530
\(326\) 0 0
\(327\) 363.965 0.0615514
\(328\) 0 0
\(329\) −4577.92 −0.767140
\(330\) 0 0
\(331\) −4692.68 −0.779253 −0.389627 0.920973i \(-0.627396\pi\)
−0.389627 + 0.920973i \(0.627396\pi\)
\(332\) 0 0
\(333\) −547.907 −0.0901654
\(334\) 0 0
\(335\) −4165.88 −0.679422
\(336\) 0 0
\(337\) −2685.75 −0.434131 −0.217065 0.976157i \(-0.569648\pi\)
−0.217065 + 0.976157i \(0.569648\pi\)
\(338\) 0 0
\(339\) 118.820 0.0190366
\(340\) 0 0
\(341\) 1678.34 0.266531
\(342\) 0 0
\(343\) −4812.16 −0.757529
\(344\) 0 0
\(345\) 345.000 0.0538382
\(346\) 0 0
\(347\) 2622.61 0.405733 0.202866 0.979206i \(-0.434974\pi\)
0.202866 + 0.979206i \(0.434974\pi\)
\(348\) 0 0
\(349\) 3220.34 0.493929 0.246964 0.969025i \(-0.420567\pi\)
0.246964 + 0.969025i \(0.420567\pi\)
\(350\) 0 0
\(351\) 364.181 0.0553804
\(352\) 0 0
\(353\) 9441.80 1.42362 0.711808 0.702374i \(-0.247877\pi\)
0.711808 + 0.702374i \(0.247877\pi\)
\(354\) 0 0
\(355\) 3902.14 0.583391
\(356\) 0 0
\(357\) −7645.42 −1.13344
\(358\) 0 0
\(359\) 6494.59 0.954794 0.477397 0.878688i \(-0.341580\pi\)
0.477397 + 0.878688i \(0.341580\pi\)
\(360\) 0 0
\(361\) −213.466 −0.0311220
\(362\) 0 0
\(363\) −812.128 −0.117426
\(364\) 0 0
\(365\) 1007.32 0.144454
\(366\) 0 0
\(367\) −3609.03 −0.513324 −0.256662 0.966501i \(-0.582623\pi\)
−0.256662 + 0.966501i \(0.582623\pi\)
\(368\) 0 0
\(369\) 348.044 0.0491016
\(370\) 0 0
\(371\) −6255.02 −0.875322
\(372\) 0 0
\(373\) −11718.4 −1.62668 −0.813342 0.581786i \(-0.802354\pi\)
−0.813342 + 0.581786i \(0.802354\pi\)
\(374\) 0 0
\(375\) 375.000 0.0516398
\(376\) 0 0
\(377\) 1329.54 0.181631
\(378\) 0 0
\(379\) −951.582 −0.128970 −0.0644848 0.997919i \(-0.520540\pi\)
−0.0644848 + 0.997919i \(0.520540\pi\)
\(380\) 0 0
\(381\) 3173.11 0.426676
\(382\) 0 0
\(383\) −9946.57 −1.32701 −0.663507 0.748170i \(-0.730933\pi\)
−0.663507 + 0.748170i \(0.730933\pi\)
\(384\) 0 0
\(385\) −4301.86 −0.569462
\(386\) 0 0
\(387\) 1273.72 0.167304
\(388\) 0 0
\(389\) 4140.43 0.539661 0.269831 0.962908i \(-0.413032\pi\)
0.269831 + 0.962908i \(0.413032\pi\)
\(390\) 0 0
\(391\) 2726.55 0.352654
\(392\) 0 0
\(393\) −5694.66 −0.730936
\(394\) 0 0
\(395\) −30.2073 −0.00384784
\(396\) 0 0
\(397\) −604.549 −0.0764268 −0.0382134 0.999270i \(-0.512167\pi\)
−0.0382134 + 0.999270i \(0.512167\pi\)
\(398\) 0 0
\(399\) −5257.51 −0.659661
\(400\) 0 0
\(401\) −9552.58 −1.18961 −0.594804 0.803871i \(-0.702770\pi\)
−0.594804 + 0.803871i \(0.702770\pi\)
\(402\) 0 0
\(403\) −565.641 −0.0699171
\(404\) 0 0
\(405\) −405.000 −0.0496904
\(406\) 0 0
\(407\) −2436.44 −0.296732
\(408\) 0 0
\(409\) 8668.64 1.04801 0.524006 0.851715i \(-0.324437\pi\)
0.524006 + 0.851715i \(0.324437\pi\)
\(410\) 0 0
\(411\) −5783.75 −0.694140
\(412\) 0 0
\(413\) 15791.6 1.88149
\(414\) 0 0
\(415\) −975.998 −0.115445
\(416\) 0 0
\(417\) −2994.47 −0.351654
\(418\) 0 0
\(419\) 2757.79 0.321543 0.160772 0.986992i \(-0.448602\pi\)
0.160772 + 0.986992i \(0.448602\pi\)
\(420\) 0 0
\(421\) 3996.08 0.462606 0.231303 0.972882i \(-0.425701\pi\)
0.231303 + 0.972882i \(0.425701\pi\)
\(422\) 0 0
\(423\) −1916.54 −0.220296
\(424\) 0 0
\(425\) 2963.64 0.338254
\(426\) 0 0
\(427\) −6927.50 −0.785117
\(428\) 0 0
\(429\) 1619.44 0.182255
\(430\) 0 0
\(431\) −1125.82 −0.125821 −0.0629105 0.998019i \(-0.520038\pi\)
−0.0629105 + 0.998019i \(0.520038\pi\)
\(432\) 0 0
\(433\) −1549.93 −0.172020 −0.0860102 0.996294i \(-0.527412\pi\)
−0.0860102 + 0.996294i \(0.527412\pi\)
\(434\) 0 0
\(435\) −1478.57 −0.162970
\(436\) 0 0
\(437\) 1874.96 0.205244
\(438\) 0 0
\(439\) 5220.43 0.567557 0.283778 0.958890i \(-0.408412\pi\)
0.283778 + 0.958890i \(0.408412\pi\)
\(440\) 0 0
\(441\) 1072.40 0.115797
\(442\) 0 0
\(443\) −1056.46 −0.113305 −0.0566523 0.998394i \(-0.518043\pi\)
−0.0566523 + 0.998394i \(0.518043\pi\)
\(444\) 0 0
\(445\) −1123.15 −0.119646
\(446\) 0 0
\(447\) −9152.95 −0.968500
\(448\) 0 0
\(449\) 4993.72 0.524874 0.262437 0.964949i \(-0.415474\pi\)
0.262437 + 0.964949i \(0.415474\pi\)
\(450\) 0 0
\(451\) 1547.69 0.161592
\(452\) 0 0
\(453\) 1132.92 0.117504
\(454\) 0 0
\(455\) 1449.83 0.149383
\(456\) 0 0
\(457\) −5962.08 −0.610272 −0.305136 0.952309i \(-0.598702\pi\)
−0.305136 + 0.952309i \(0.598702\pi\)
\(458\) 0 0
\(459\) −3200.74 −0.325485
\(460\) 0 0
\(461\) 8576.37 0.866467 0.433234 0.901282i \(-0.357373\pi\)
0.433234 + 0.901282i \(0.357373\pi\)
\(462\) 0 0
\(463\) −1485.34 −0.149092 −0.0745458 0.997218i \(-0.523751\pi\)
−0.0745458 + 0.997218i \(0.523751\pi\)
\(464\) 0 0
\(465\) 629.041 0.0627335
\(466\) 0 0
\(467\) −18703.9 −1.85335 −0.926673 0.375869i \(-0.877344\pi\)
−0.926673 + 0.375869i \(0.877344\pi\)
\(468\) 0 0
\(469\) 17911.5 1.76348
\(470\) 0 0
\(471\) 3097.80 0.303056
\(472\) 0 0
\(473\) 5663.99 0.550593
\(474\) 0 0
\(475\) 2038.00 0.196863
\(476\) 0 0
\(477\) −2618.65 −0.251362
\(478\) 0 0
\(479\) 11857.0 1.13103 0.565513 0.824739i \(-0.308678\pi\)
0.565513 + 0.824739i \(0.308678\pi\)
\(480\) 0 0
\(481\) 821.139 0.0778394
\(482\) 0 0
\(483\) −1483.35 −0.139741
\(484\) 0 0
\(485\) 4386.44 0.410676
\(486\) 0 0
\(487\) −15502.8 −1.44250 −0.721251 0.692674i \(-0.756432\pi\)
−0.721251 + 0.692674i \(0.756432\pi\)
\(488\) 0 0
\(489\) −8426.73 −0.779284
\(490\) 0 0
\(491\) 18381.3 1.68948 0.844742 0.535174i \(-0.179754\pi\)
0.844742 + 0.535174i \(0.179754\pi\)
\(492\) 0 0
\(493\) −11685.2 −1.06749
\(494\) 0 0
\(495\) −1800.96 −0.163530
\(496\) 0 0
\(497\) −16777.5 −1.51423
\(498\) 0 0
\(499\) −17913.9 −1.60709 −0.803545 0.595244i \(-0.797055\pi\)
−0.803545 + 0.595244i \(0.797055\pi\)
\(500\) 0 0
\(501\) 4833.74 0.431049
\(502\) 0 0
\(503\) 21272.7 1.88569 0.942846 0.333229i \(-0.108138\pi\)
0.942846 + 0.333229i \(0.108138\pi\)
\(504\) 0 0
\(505\) 484.720 0.0427124
\(506\) 0 0
\(507\) 6045.21 0.529541
\(508\) 0 0
\(509\) 19098.2 1.66309 0.831546 0.555456i \(-0.187456\pi\)
0.831546 + 0.555456i \(0.187456\pi\)
\(510\) 0 0
\(511\) −4331.04 −0.374939
\(512\) 0 0
\(513\) −2201.04 −0.189432
\(514\) 0 0
\(515\) 4207.24 0.359987
\(516\) 0 0
\(517\) −8522.49 −0.724987
\(518\) 0 0
\(519\) −5881.67 −0.497450
\(520\) 0 0
\(521\) −5006.92 −0.421031 −0.210516 0.977590i \(-0.567514\pi\)
−0.210516 + 0.977590i \(0.567514\pi\)
\(522\) 0 0
\(523\) −6771.52 −0.566152 −0.283076 0.959097i \(-0.591355\pi\)
−0.283076 + 0.959097i \(0.591355\pi\)
\(524\) 0 0
\(525\) −1612.34 −0.134034
\(526\) 0 0
\(527\) 4971.34 0.410921
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) 6611.11 0.540297
\(532\) 0 0
\(533\) −521.609 −0.0423891
\(534\) 0 0
\(535\) −4655.06 −0.376179
\(536\) 0 0
\(537\) −11661.7 −0.937135
\(538\) 0 0
\(539\) 4768.77 0.381086
\(540\) 0 0
\(541\) −12351.6 −0.981581 −0.490790 0.871278i \(-0.663292\pi\)
−0.490790 + 0.871278i \(0.663292\pi\)
\(542\) 0 0
\(543\) 1860.97 0.147075
\(544\) 0 0
\(545\) 606.608 0.0476775
\(546\) 0 0
\(547\) −16491.4 −1.28907 −0.644534 0.764575i \(-0.722949\pi\)
−0.644534 + 0.764575i \(0.722949\pi\)
\(548\) 0 0
\(549\) −2900.18 −0.225458
\(550\) 0 0
\(551\) −8035.53 −0.621280
\(552\) 0 0
\(553\) 129.878 0.00998731
\(554\) 0 0
\(555\) −913.178 −0.0698419
\(556\) 0 0
\(557\) −4078.06 −0.310221 −0.155110 0.987897i \(-0.549573\pi\)
−0.155110 + 0.987897i \(0.549573\pi\)
\(558\) 0 0
\(559\) −1908.90 −0.144433
\(560\) 0 0
\(561\) −14233.1 −1.07116
\(562\) 0 0
\(563\) 3563.37 0.266746 0.133373 0.991066i \(-0.457419\pi\)
0.133373 + 0.991066i \(0.457419\pi\)
\(564\) 0 0
\(565\) 198.033 0.0147457
\(566\) 0 0
\(567\) 1741.32 0.128975
\(568\) 0 0
\(569\) 604.432 0.0445327 0.0222663 0.999752i \(-0.492912\pi\)
0.0222663 + 0.999752i \(0.492912\pi\)
\(570\) 0 0
\(571\) 3149.87 0.230854 0.115427 0.993316i \(-0.463176\pi\)
0.115427 + 0.993316i \(0.463176\pi\)
\(572\) 0 0
\(573\) −4583.77 −0.334188
\(574\) 0 0
\(575\) 575.000 0.0417029
\(576\) 0 0
\(577\) −11948.7 −0.862100 −0.431050 0.902328i \(-0.641857\pi\)
−0.431050 + 0.902328i \(0.641857\pi\)
\(578\) 0 0
\(579\) −7240.39 −0.519690
\(580\) 0 0
\(581\) 4196.36 0.299646
\(582\) 0 0
\(583\) −11644.7 −0.827225
\(584\) 0 0
\(585\) 606.968 0.0428975
\(586\) 0 0
\(587\) −26958.4 −1.89556 −0.947780 0.318925i \(-0.896678\pi\)
−0.947780 + 0.318925i \(0.896678\pi\)
\(588\) 0 0
\(589\) 3418.64 0.239155
\(590\) 0 0
\(591\) −9903.60 −0.689306
\(592\) 0 0
\(593\) −12051.5 −0.834560 −0.417280 0.908778i \(-0.637017\pi\)
−0.417280 + 0.908778i \(0.637017\pi\)
\(594\) 0 0
\(595\) −12742.4 −0.877960
\(596\) 0 0
\(597\) −5100.43 −0.349660
\(598\) 0 0
\(599\) −7612.90 −0.519290 −0.259645 0.965704i \(-0.583606\pi\)
−0.259645 + 0.965704i \(0.583606\pi\)
\(600\) 0 0
\(601\) −10181.2 −0.691012 −0.345506 0.938417i \(-0.612293\pi\)
−0.345506 + 0.938417i \(0.612293\pi\)
\(602\) 0 0
\(603\) 7498.58 0.506411
\(604\) 0 0
\(605\) −1353.55 −0.0909579
\(606\) 0 0
\(607\) 791.884 0.0529515 0.0264758 0.999649i \(-0.491572\pi\)
0.0264758 + 0.999649i \(0.491572\pi\)
\(608\) 0 0
\(609\) 6357.19 0.422999
\(610\) 0 0
\(611\) 2872.28 0.190180
\(612\) 0 0
\(613\) 4128.11 0.271995 0.135997 0.990709i \(-0.456576\pi\)
0.135997 + 0.990709i \(0.456576\pi\)
\(614\) 0 0
\(615\) 580.074 0.0380339
\(616\) 0 0
\(617\) −18712.3 −1.22096 −0.610478 0.792033i \(-0.709023\pi\)
−0.610478 + 0.792033i \(0.709023\pi\)
\(618\) 0 0
\(619\) −21238.9 −1.37910 −0.689549 0.724239i \(-0.742191\pi\)
−0.689549 + 0.724239i \(0.742191\pi\)
\(620\) 0 0
\(621\) −621.000 −0.0401286
\(622\) 0 0
\(623\) 4829.05 0.310549
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) −9787.64 −0.623414
\(628\) 0 0
\(629\) −7216.89 −0.457482
\(630\) 0 0
\(631\) 2300.68 0.145149 0.0725743 0.997363i \(-0.476879\pi\)
0.0725743 + 0.997363i \(0.476879\pi\)
\(632\) 0 0
\(633\) 1590.08 0.0998421
\(634\) 0 0
\(635\) 5288.52 0.330502
\(636\) 0 0
\(637\) −1607.19 −0.0999673
\(638\) 0 0
\(639\) −7023.85 −0.434834
\(640\) 0 0
\(641\) 19451.2 1.19856 0.599279 0.800540i \(-0.295454\pi\)
0.599279 + 0.800540i \(0.295454\pi\)
\(642\) 0 0
\(643\) −2860.61 −0.175446 −0.0877228 0.996145i \(-0.527959\pi\)
−0.0877228 + 0.996145i \(0.527959\pi\)
\(644\) 0 0
\(645\) 2122.86 0.129593
\(646\) 0 0
\(647\) 10522.9 0.639412 0.319706 0.947517i \(-0.396416\pi\)
0.319706 + 0.947517i \(0.396416\pi\)
\(648\) 0 0
\(649\) 29398.4 1.77810
\(650\) 0 0
\(651\) −2704.60 −0.162829
\(652\) 0 0
\(653\) 22516.1 1.34935 0.674673 0.738117i \(-0.264285\pi\)
0.674673 + 0.738117i \(0.264285\pi\)
\(654\) 0 0
\(655\) −9491.10 −0.566180
\(656\) 0 0
\(657\) −1813.18 −0.107669
\(658\) 0 0
\(659\) −24456.3 −1.44565 −0.722824 0.691032i \(-0.757156\pi\)
−0.722824 + 0.691032i \(0.757156\pi\)
\(660\) 0 0
\(661\) 23451.5 1.37997 0.689984 0.723825i \(-0.257618\pi\)
0.689984 + 0.723825i \(0.257618\pi\)
\(662\) 0 0
\(663\) 4796.89 0.280989
\(664\) 0 0
\(665\) −8762.52 −0.510971
\(666\) 0 0
\(667\) −2267.14 −0.131610
\(668\) 0 0
\(669\) 17694.8 1.02260
\(670\) 0 0
\(671\) −12896.6 −0.741977
\(672\) 0 0
\(673\) −32102.4 −1.83871 −0.919357 0.393423i \(-0.871291\pi\)
−0.919357 + 0.393423i \(0.871291\pi\)
\(674\) 0 0
\(675\) −675.000 −0.0384900
\(676\) 0 0
\(677\) −12100.0 −0.686914 −0.343457 0.939168i \(-0.611598\pi\)
−0.343457 + 0.939168i \(0.611598\pi\)
\(678\) 0 0
\(679\) −18859.8 −1.06594
\(680\) 0 0
\(681\) 7956.09 0.447692
\(682\) 0 0
\(683\) 11765.1 0.659121 0.329560 0.944134i \(-0.393099\pi\)
0.329560 + 0.944134i \(0.393099\pi\)
\(684\) 0 0
\(685\) −9639.59 −0.537678
\(686\) 0 0
\(687\) 2177.26 0.120914
\(688\) 0 0
\(689\) 3924.53 0.216999
\(690\) 0 0
\(691\) 15847.1 0.872434 0.436217 0.899842i \(-0.356318\pi\)
0.436217 + 0.899842i \(0.356318\pi\)
\(692\) 0 0
\(693\) 7743.34 0.424452
\(694\) 0 0
\(695\) −4990.78 −0.272390
\(696\) 0 0
\(697\) 4584.36 0.249132
\(698\) 0 0
\(699\) −3268.89 −0.176882
\(700\) 0 0
\(701\) 32273.3 1.73887 0.869435 0.494048i \(-0.164483\pi\)
0.869435 + 0.494048i \(0.164483\pi\)
\(702\) 0 0
\(703\) −4962.82 −0.266254
\(704\) 0 0
\(705\) −3194.23 −0.170640
\(706\) 0 0
\(707\) −2084.08 −0.110863
\(708\) 0 0
\(709\) 10737.1 0.568745 0.284372 0.958714i \(-0.408215\pi\)
0.284372 + 0.958714i \(0.408215\pi\)
\(710\) 0 0
\(711\) 54.3732 0.00286801
\(712\) 0 0
\(713\) 964.530 0.0506619
\(714\) 0 0
\(715\) 2699.07 0.141174
\(716\) 0 0
\(717\) 13456.6 0.700903
\(718\) 0 0
\(719\) 35010.8 1.81597 0.907986 0.419001i \(-0.137620\pi\)
0.907986 + 0.419001i \(0.137620\pi\)
\(720\) 0 0
\(721\) −18089.3 −0.934369
\(722\) 0 0
\(723\) −16054.0 −0.825800
\(724\) 0 0
\(725\) −2464.28 −0.126236
\(726\) 0 0
\(727\) 8597.69 0.438612 0.219306 0.975656i \(-0.429621\pi\)
0.219306 + 0.975656i \(0.429621\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 16777.1 0.848869
\(732\) 0 0
\(733\) −10359.5 −0.522015 −0.261008 0.965337i \(-0.584055\pi\)
−0.261008 + 0.965337i \(0.584055\pi\)
\(734\) 0 0
\(735\) 1787.33 0.0896963
\(736\) 0 0
\(737\) 33344.8 1.66658
\(738\) 0 0
\(739\) 23336.3 1.16162 0.580811 0.814039i \(-0.302736\pi\)
0.580811 + 0.814039i \(0.302736\pi\)
\(740\) 0 0
\(741\) 3298.67 0.163535
\(742\) 0 0
\(743\) 7241.38 0.357551 0.178776 0.983890i \(-0.442786\pi\)
0.178776 + 0.983890i \(0.442786\pi\)
\(744\) 0 0
\(745\) −15254.9 −0.750197
\(746\) 0 0
\(747\) 1756.80 0.0860480
\(748\) 0 0
\(749\) 20014.7 0.976397
\(750\) 0 0
\(751\) −23882.1 −1.16041 −0.580207 0.814469i \(-0.697028\pi\)
−0.580207 + 0.814469i \(0.697028\pi\)
\(752\) 0 0
\(753\) −837.922 −0.0405519
\(754\) 0 0
\(755\) 1888.20 0.0910178
\(756\) 0 0
\(757\) 4701.51 0.225732 0.112866 0.993610i \(-0.463997\pi\)
0.112866 + 0.993610i \(0.463997\pi\)
\(758\) 0 0
\(759\) −2761.47 −0.132062
\(760\) 0 0
\(761\) −16379.9 −0.780251 −0.390126 0.920762i \(-0.627568\pi\)
−0.390126 + 0.920762i \(0.627568\pi\)
\(762\) 0 0
\(763\) −2608.15 −0.123750
\(764\) 0 0
\(765\) −5334.56 −0.252119
\(766\) 0 0
\(767\) −9907.98 −0.466436
\(768\) 0 0
\(769\) 7512.71 0.352296 0.176148 0.984364i \(-0.443636\pi\)
0.176148 + 0.984364i \(0.443636\pi\)
\(770\) 0 0
\(771\) −10848.2 −0.506731
\(772\) 0 0
\(773\) 1729.18 0.0804582 0.0402291 0.999190i \(-0.487191\pi\)
0.0402291 + 0.999190i \(0.487191\pi\)
\(774\) 0 0
\(775\) 1048.40 0.0485932
\(776\) 0 0
\(777\) 3926.26 0.181279
\(778\) 0 0
\(779\) 3152.52 0.144994
\(780\) 0 0
\(781\) −31233.8 −1.43103
\(782\) 0 0
\(783\) 2661.42 0.121471
\(784\) 0 0
\(785\) 5163.01 0.234746
\(786\) 0 0
\(787\) 9897.44 0.448292 0.224146 0.974556i \(-0.428041\pi\)
0.224146 + 0.974556i \(0.428041\pi\)
\(788\) 0 0
\(789\) −262.571 −0.0118476
\(790\) 0 0
\(791\) −851.457 −0.0382735
\(792\) 0 0
\(793\) 4346.46 0.194637
\(794\) 0 0
\(795\) −4364.41 −0.194704
\(796\) 0 0
\(797\) −33454.4 −1.48685 −0.743423 0.668821i \(-0.766799\pi\)
−0.743423 + 0.668821i \(0.766799\pi\)
\(798\) 0 0
\(799\) −25244.1 −1.11774
\(800\) 0 0
\(801\) 2021.67 0.0891788
\(802\) 0 0
\(803\) −8062.88 −0.354337
\(804\) 0 0
\(805\) −2472.25 −0.108243
\(806\) 0 0
\(807\) 427.915 0.0186658
\(808\) 0 0
\(809\) −14860.0 −0.645797 −0.322898 0.946434i \(-0.604657\pi\)
−0.322898 + 0.946434i \(0.604657\pi\)
\(810\) 0 0
\(811\) 19378.0 0.839030 0.419515 0.907748i \(-0.362200\pi\)
0.419515 + 0.907748i \(0.362200\pi\)
\(812\) 0 0
\(813\) −17122.0 −0.738618
\(814\) 0 0
\(815\) −14044.5 −0.603631
\(816\) 0 0
\(817\) 11537.1 0.494040
\(818\) 0 0
\(819\) −2609.69 −0.111343
\(820\) 0 0
\(821\) −13859.4 −0.589156 −0.294578 0.955627i \(-0.595179\pi\)
−0.294578 + 0.955627i \(0.595179\pi\)
\(822\) 0 0
\(823\) 29132.2 1.23388 0.616941 0.787010i \(-0.288372\pi\)
0.616941 + 0.787010i \(0.288372\pi\)
\(824\) 0 0
\(825\) −3001.60 −0.126670
\(826\) 0 0
\(827\) 4471.06 0.187998 0.0939988 0.995572i \(-0.470035\pi\)
0.0939988 + 0.995572i \(0.470035\pi\)
\(828\) 0 0
\(829\) 40745.6 1.70706 0.853530 0.521044i \(-0.174457\pi\)
0.853530 + 0.521044i \(0.174457\pi\)
\(830\) 0 0
\(831\) −13982.6 −0.583695
\(832\) 0 0
\(833\) 14125.4 0.587534
\(834\) 0 0
\(835\) 8056.23 0.333889
\(836\) 0 0
\(837\) −1132.27 −0.0467588
\(838\) 0 0
\(839\) 4213.85 0.173395 0.0866974 0.996235i \(-0.472369\pi\)
0.0866974 + 0.996235i \(0.472369\pi\)
\(840\) 0 0
\(841\) −14672.7 −0.601613
\(842\) 0 0
\(843\) 1104.98 0.0451452
\(844\) 0 0
\(845\) 10075.3 0.410180
\(846\) 0 0
\(847\) 5819.66 0.236087
\(848\) 0 0
\(849\) 20725.2 0.837793
\(850\) 0 0
\(851\) −1400.21 −0.0564024
\(852\) 0 0
\(853\) 22015.9 0.883717 0.441858 0.897085i \(-0.354319\pi\)
0.441858 + 0.897085i \(0.354319\pi\)
\(854\) 0 0
\(855\) −3668.41 −0.146733
\(856\) 0 0
\(857\) 37921.0 1.51150 0.755750 0.654860i \(-0.227272\pi\)
0.755750 + 0.654860i \(0.227272\pi\)
\(858\) 0 0
\(859\) 3586.49 0.142456 0.0712279 0.997460i \(-0.477308\pi\)
0.0712279 + 0.997460i \(0.477308\pi\)
\(860\) 0 0
\(861\) −2494.06 −0.0987195
\(862\) 0 0
\(863\) −10055.7 −0.396642 −0.198321 0.980137i \(-0.563549\pi\)
−0.198321 + 0.980137i \(0.563549\pi\)
\(864\) 0 0
\(865\) −9802.78 −0.385323
\(866\) 0 0
\(867\) −27420.3 −1.07410
\(868\) 0 0
\(869\) 241.788 0.00943853
\(870\) 0 0
\(871\) −11238.0 −0.437182
\(872\) 0 0
\(873\) −7895.60 −0.306100
\(874\) 0 0
\(875\) −2687.23 −0.103823
\(876\) 0 0
\(877\) −24683.7 −0.950410 −0.475205 0.879875i \(-0.657626\pi\)
−0.475205 + 0.879875i \(0.657626\pi\)
\(878\) 0 0
\(879\) 16165.5 0.620308
\(880\) 0 0
\(881\) −27654.5 −1.05755 −0.528776 0.848762i \(-0.677349\pi\)
−0.528776 + 0.848762i \(0.677349\pi\)
\(882\) 0 0
\(883\) 48590.5 1.85187 0.925934 0.377686i \(-0.123280\pi\)
0.925934 + 0.377686i \(0.123280\pi\)
\(884\) 0 0
\(885\) 11018.5 0.418513
\(886\) 0 0
\(887\) −12129.2 −0.459144 −0.229572 0.973292i \(-0.573733\pi\)
−0.229572 + 0.973292i \(0.573733\pi\)
\(888\) 0 0
\(889\) −22738.3 −0.857838
\(890\) 0 0
\(891\) 3241.73 0.121888
\(892\) 0 0
\(893\) −17359.6 −0.650522
\(894\) 0 0
\(895\) −19436.2 −0.725902
\(896\) 0 0
\(897\) 930.684 0.0346428
\(898\) 0 0
\(899\) −4133.69 −0.153355
\(900\) 0 0
\(901\) −34492.2 −1.27536
\(902\) 0 0
\(903\) −9127.38 −0.336368
\(904\) 0 0
\(905\) 3101.62 0.113924
\(906\) 0 0
\(907\) 15203.3 0.556578 0.278289 0.960497i \(-0.410233\pi\)
0.278289 + 0.960497i \(0.410233\pi\)
\(908\) 0 0
\(909\) −872.496 −0.0318359
\(910\) 0 0
\(911\) 2197.66 0.0799249 0.0399625 0.999201i \(-0.487276\pi\)
0.0399625 + 0.999201i \(0.487276\pi\)
\(912\) 0 0
\(913\) 7812.15 0.283181
\(914\) 0 0
\(915\) −4833.63 −0.174639
\(916\) 0 0
\(917\) 40807.6 1.46956
\(918\) 0 0
\(919\) −26364.7 −0.946345 −0.473173 0.880970i \(-0.656891\pi\)
−0.473173 + 0.880970i \(0.656891\pi\)
\(920\) 0 0
\(921\) −3927.70 −0.140524
\(922\) 0 0
\(923\) 10526.5 0.375390
\(924\) 0 0
\(925\) −1521.96 −0.0540993
\(926\) 0 0
\(927\) −7573.03 −0.268318
\(928\) 0 0
\(929\) −9390.85 −0.331651 −0.165825 0.986155i \(-0.553029\pi\)
−0.165825 + 0.986155i \(0.553029\pi\)
\(930\) 0 0
\(931\) 9713.57 0.341944
\(932\) 0 0
\(933\) 8456.11 0.296721
\(934\) 0 0
\(935\) −23721.8 −0.829718
\(936\) 0 0
\(937\) 5679.69 0.198023 0.0990115 0.995086i \(-0.468432\pi\)
0.0990115 + 0.995086i \(0.468432\pi\)
\(938\) 0 0
\(939\) −13671.5 −0.475136
\(940\) 0 0
\(941\) 43504.6 1.50713 0.753565 0.657373i \(-0.228332\pi\)
0.753565 + 0.657373i \(0.228332\pi\)
\(942\) 0 0
\(943\) 889.447 0.0307151
\(944\) 0 0
\(945\) 2902.20 0.0999034
\(946\) 0 0
\(947\) −44473.0 −1.52606 −0.763030 0.646364i \(-0.776289\pi\)
−0.763030 + 0.646364i \(0.776289\pi\)
\(948\) 0 0
\(949\) 2717.39 0.0929505
\(950\) 0 0
\(951\) −15386.6 −0.524653
\(952\) 0 0
\(953\) −54537.7 −1.85378 −0.926888 0.375339i \(-0.877526\pi\)
−0.926888 + 0.375339i \(0.877526\pi\)
\(954\) 0 0
\(955\) −7639.62 −0.258861
\(956\) 0 0
\(957\) 11834.9 0.399756
\(958\) 0 0
\(959\) 41446.0 1.39558
\(960\) 0 0
\(961\) −28032.4 −0.940968
\(962\) 0 0
\(963\) 8379.10 0.280387
\(964\) 0 0
\(965\) −12067.3 −0.402550
\(966\) 0 0
\(967\) −39815.6 −1.32408 −0.662040 0.749469i \(-0.730309\pi\)
−0.662040 + 0.749469i \(0.730309\pi\)
\(968\) 0 0
\(969\) −28991.6 −0.961140
\(970\) 0 0
\(971\) 4449.25 0.147048 0.0735238 0.997293i \(-0.476576\pi\)
0.0735238 + 0.997293i \(0.476576\pi\)
\(972\) 0 0
\(973\) 21458.2 0.707007
\(974\) 0 0
\(975\) 1011.61 0.0332282
\(976\) 0 0
\(977\) 9845.49 0.322400 0.161200 0.986922i \(-0.448464\pi\)
0.161200 + 0.986922i \(0.448464\pi\)
\(978\) 0 0
\(979\) 8990.00 0.293485
\(980\) 0 0
\(981\) −1091.89 −0.0355367
\(982\) 0 0
\(983\) 21712.3 0.704490 0.352245 0.935908i \(-0.385418\pi\)
0.352245 + 0.935908i \(0.385418\pi\)
\(984\) 0 0
\(985\) −16506.0 −0.533934
\(986\) 0 0
\(987\) 13733.8 0.442908
\(988\) 0 0
\(989\) 3255.06 0.104656
\(990\) 0 0
\(991\) −31010.4 −0.994024 −0.497012 0.867744i \(-0.665570\pi\)
−0.497012 + 0.867744i \(0.665570\pi\)
\(992\) 0 0
\(993\) 14078.0 0.449902
\(994\) 0 0
\(995\) −8500.72 −0.270845
\(996\) 0 0
\(997\) −27487.3 −0.873151 −0.436575 0.899668i \(-0.643809\pi\)
−0.436575 + 0.899668i \(0.643809\pi\)
\(998\) 0 0
\(999\) 1643.72 0.0520570
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1380.4.a.e.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1380.4.a.e.1.5 5 1.1 even 1 trivial