Properties

Label 1380.4.a.e.1.3
Level $1380$
Weight $4$
Character 1380.1
Self dual yes
Analytic conductor $81.423$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1380,4,Mod(1,1380)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1380.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1380, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1380 = 2^{2} \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1380.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,-15,0,-25] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(81.4226358079\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 278x^{3} + 216x^{2} + 14064x - 33408 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(15.0456\) of defining polynomial
Character \(\chi\) \(=\) 1380.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} -5.00000 q^{5} +5.33445 q^{7} +9.00000 q^{9} -19.5786 q^{11} +72.6950 q^{13} +15.0000 q^{15} +99.8318 q^{17} -59.0008 q^{19} -16.0034 q^{21} +23.0000 q^{23} +25.0000 q^{25} -27.0000 q^{27} -54.3168 q^{29} -291.559 q^{31} +58.7357 q^{33} -26.6723 q^{35} +419.042 q^{37} -218.085 q^{39} -307.385 q^{41} -328.152 q^{43} -45.0000 q^{45} +234.235 q^{47} -314.544 q^{49} -299.495 q^{51} +289.308 q^{53} +97.8928 q^{55} +177.003 q^{57} +31.8122 q^{59} +289.303 q^{61} +48.0101 q^{63} -363.475 q^{65} -912.347 q^{67} -69.0000 q^{69} +997.663 q^{71} +293.255 q^{73} -75.0000 q^{75} -104.441 q^{77} +170.804 q^{79} +81.0000 q^{81} +576.631 q^{83} -499.159 q^{85} +162.951 q^{87} +270.177 q^{89} +387.788 q^{91} +874.677 q^{93} +295.004 q^{95} +76.5491 q^{97} -176.207 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 15 q^{3} - 25 q^{5} - 7 q^{7} + 45 q^{9} + 64 q^{11} + 80 q^{13} + 75 q^{15} - 21 q^{17} - 52 q^{19} + 21 q^{21} + 115 q^{23} + 125 q^{25} - 135 q^{27} - 277 q^{29} - 289 q^{31} - 192 q^{33} + 35 q^{35}+ \cdots + 576 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) 5.33445 0.288033 0.144017 0.989575i \(-0.453998\pi\)
0.144017 + 0.989575i \(0.453998\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −19.5786 −0.536651 −0.268325 0.963328i \(-0.586470\pi\)
−0.268325 + 0.963328i \(0.586470\pi\)
\(12\) 0 0
\(13\) 72.6950 1.55092 0.775460 0.631397i \(-0.217518\pi\)
0.775460 + 0.631397i \(0.217518\pi\)
\(14\) 0 0
\(15\) 15.0000 0.258199
\(16\) 0 0
\(17\) 99.8318 1.42428 0.712140 0.702037i \(-0.247726\pi\)
0.712140 + 0.702037i \(0.247726\pi\)
\(18\) 0 0
\(19\) −59.0008 −0.712406 −0.356203 0.934409i \(-0.615929\pi\)
−0.356203 + 0.934409i \(0.615929\pi\)
\(20\) 0 0
\(21\) −16.0034 −0.166296
\(22\) 0 0
\(23\) 23.0000 0.208514
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) −54.3168 −0.347806 −0.173903 0.984763i \(-0.555638\pi\)
−0.173903 + 0.984763i \(0.555638\pi\)
\(30\) 0 0
\(31\) −291.559 −1.68921 −0.844605 0.535390i \(-0.820165\pi\)
−0.844605 + 0.535390i \(0.820165\pi\)
\(32\) 0 0
\(33\) 58.7357 0.309835
\(34\) 0 0
\(35\) −26.6723 −0.128812
\(36\) 0 0
\(37\) 419.042 1.86189 0.930947 0.365155i \(-0.118984\pi\)
0.930947 + 0.365155i \(0.118984\pi\)
\(38\) 0 0
\(39\) −218.085 −0.895424
\(40\) 0 0
\(41\) −307.385 −1.17087 −0.585434 0.810720i \(-0.699076\pi\)
−0.585434 + 0.810720i \(0.699076\pi\)
\(42\) 0 0
\(43\) −328.152 −1.16378 −0.581891 0.813266i \(-0.697687\pi\)
−0.581891 + 0.813266i \(0.697687\pi\)
\(44\) 0 0
\(45\) −45.0000 −0.149071
\(46\) 0 0
\(47\) 234.235 0.726951 0.363475 0.931604i \(-0.381590\pi\)
0.363475 + 0.931604i \(0.381590\pi\)
\(48\) 0 0
\(49\) −314.544 −0.917037
\(50\) 0 0
\(51\) −299.495 −0.822309
\(52\) 0 0
\(53\) 289.308 0.749802 0.374901 0.927065i \(-0.377677\pi\)
0.374901 + 0.927065i \(0.377677\pi\)
\(54\) 0 0
\(55\) 97.8928 0.239998
\(56\) 0 0
\(57\) 177.003 0.411308
\(58\) 0 0
\(59\) 31.8122 0.0701965 0.0350982 0.999384i \(-0.488826\pi\)
0.0350982 + 0.999384i \(0.488826\pi\)
\(60\) 0 0
\(61\) 289.303 0.607236 0.303618 0.952794i \(-0.401805\pi\)
0.303618 + 0.952794i \(0.401805\pi\)
\(62\) 0 0
\(63\) 48.0101 0.0960111
\(64\) 0 0
\(65\) −363.475 −0.693592
\(66\) 0 0
\(67\) −912.347 −1.66360 −0.831798 0.555079i \(-0.812688\pi\)
−0.831798 + 0.555079i \(0.812688\pi\)
\(68\) 0 0
\(69\) −69.0000 −0.120386
\(70\) 0 0
\(71\) 997.663 1.66762 0.833808 0.552054i \(-0.186156\pi\)
0.833808 + 0.552054i \(0.186156\pi\)
\(72\) 0 0
\(73\) 293.255 0.470177 0.235088 0.971974i \(-0.424462\pi\)
0.235088 + 0.971974i \(0.424462\pi\)
\(74\) 0 0
\(75\) −75.0000 −0.115470
\(76\) 0 0
\(77\) −104.441 −0.154573
\(78\) 0 0
\(79\) 170.804 0.243252 0.121626 0.992576i \(-0.461189\pi\)
0.121626 + 0.992576i \(0.461189\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 576.631 0.762572 0.381286 0.924457i \(-0.375481\pi\)
0.381286 + 0.924457i \(0.375481\pi\)
\(84\) 0 0
\(85\) −499.159 −0.636958
\(86\) 0 0
\(87\) 162.951 0.200806
\(88\) 0 0
\(89\) 270.177 0.321783 0.160891 0.986972i \(-0.448563\pi\)
0.160891 + 0.986972i \(0.448563\pi\)
\(90\) 0 0
\(91\) 387.788 0.446716
\(92\) 0 0
\(93\) 874.677 0.975266
\(94\) 0 0
\(95\) 295.004 0.318598
\(96\) 0 0
\(97\) 76.5491 0.0801276 0.0400638 0.999197i \(-0.487244\pi\)
0.0400638 + 0.999197i \(0.487244\pi\)
\(98\) 0 0
\(99\) −176.207 −0.178884
\(100\) 0 0
\(101\) 1376.73 1.35634 0.678168 0.734907i \(-0.262774\pi\)
0.678168 + 0.734907i \(0.262774\pi\)
\(102\) 0 0
\(103\) −892.405 −0.853702 −0.426851 0.904322i \(-0.640377\pi\)
−0.426851 + 0.904322i \(0.640377\pi\)
\(104\) 0 0
\(105\) 80.0168 0.0743699
\(106\) 0 0
\(107\) 96.5547 0.0872364 0.0436182 0.999048i \(-0.486111\pi\)
0.0436182 + 0.999048i \(0.486111\pi\)
\(108\) 0 0
\(109\) −181.069 −0.159113 −0.0795563 0.996830i \(-0.525350\pi\)
−0.0795563 + 0.996830i \(0.525350\pi\)
\(110\) 0 0
\(111\) −1257.13 −1.07496
\(112\) 0 0
\(113\) −608.456 −0.506538 −0.253269 0.967396i \(-0.581506\pi\)
−0.253269 + 0.967396i \(0.581506\pi\)
\(114\) 0 0
\(115\) −115.000 −0.0932505
\(116\) 0 0
\(117\) 654.255 0.516973
\(118\) 0 0
\(119\) 532.548 0.410240
\(120\) 0 0
\(121\) −947.680 −0.712006
\(122\) 0 0
\(123\) 922.156 0.676000
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 524.494 0.366467 0.183234 0.983069i \(-0.441344\pi\)
0.183234 + 0.983069i \(0.441344\pi\)
\(128\) 0 0
\(129\) 984.455 0.671910
\(130\) 0 0
\(131\) −413.338 −0.275676 −0.137838 0.990455i \(-0.544015\pi\)
−0.137838 + 0.990455i \(0.544015\pi\)
\(132\) 0 0
\(133\) −314.737 −0.205197
\(134\) 0 0
\(135\) 135.000 0.0860663
\(136\) 0 0
\(137\) 2055.63 1.28193 0.640964 0.767571i \(-0.278535\pi\)
0.640964 + 0.767571i \(0.278535\pi\)
\(138\) 0 0
\(139\) 1692.64 1.03286 0.516431 0.856329i \(-0.327260\pi\)
0.516431 + 0.856329i \(0.327260\pi\)
\(140\) 0 0
\(141\) −702.705 −0.419705
\(142\) 0 0
\(143\) −1423.26 −0.832302
\(144\) 0 0
\(145\) 271.584 0.155544
\(146\) 0 0
\(147\) 943.631 0.529451
\(148\) 0 0
\(149\) −1184.43 −0.651225 −0.325612 0.945503i \(-0.605570\pi\)
−0.325612 + 0.945503i \(0.605570\pi\)
\(150\) 0 0
\(151\) 2879.25 1.55172 0.775860 0.630905i \(-0.217316\pi\)
0.775860 + 0.630905i \(0.217316\pi\)
\(152\) 0 0
\(153\) 898.486 0.474760
\(154\) 0 0
\(155\) 1457.79 0.755438
\(156\) 0 0
\(157\) 219.950 0.111808 0.0559042 0.998436i \(-0.482196\pi\)
0.0559042 + 0.998436i \(0.482196\pi\)
\(158\) 0 0
\(159\) −867.924 −0.432898
\(160\) 0 0
\(161\) 122.692 0.0600591
\(162\) 0 0
\(163\) 968.636 0.465457 0.232728 0.972542i \(-0.425235\pi\)
0.232728 + 0.972542i \(0.425235\pi\)
\(164\) 0 0
\(165\) −293.678 −0.138563
\(166\) 0 0
\(167\) 1402.89 0.650052 0.325026 0.945705i \(-0.394627\pi\)
0.325026 + 0.945705i \(0.394627\pi\)
\(168\) 0 0
\(169\) 3087.56 1.40535
\(170\) 0 0
\(171\) −531.008 −0.237469
\(172\) 0 0
\(173\) 201.539 0.0885707 0.0442854 0.999019i \(-0.485899\pi\)
0.0442854 + 0.999019i \(0.485899\pi\)
\(174\) 0 0
\(175\) 133.361 0.0576067
\(176\) 0 0
\(177\) −95.4365 −0.0405280
\(178\) 0 0
\(179\) 2685.44 1.12134 0.560668 0.828041i \(-0.310545\pi\)
0.560668 + 0.828041i \(0.310545\pi\)
\(180\) 0 0
\(181\) 332.053 0.136361 0.0681804 0.997673i \(-0.478281\pi\)
0.0681804 + 0.997673i \(0.478281\pi\)
\(182\) 0 0
\(183\) −867.908 −0.350588
\(184\) 0 0
\(185\) −2095.21 −0.832664
\(186\) 0 0
\(187\) −1954.56 −0.764341
\(188\) 0 0
\(189\) −144.030 −0.0554320
\(190\) 0 0
\(191\) −726.225 −0.275119 −0.137560 0.990493i \(-0.543926\pi\)
−0.137560 + 0.990493i \(0.543926\pi\)
\(192\) 0 0
\(193\) 904.503 0.337345 0.168672 0.985672i \(-0.446052\pi\)
0.168672 + 0.985672i \(0.446052\pi\)
\(194\) 0 0
\(195\) 1090.42 0.400446
\(196\) 0 0
\(197\) 940.195 0.340031 0.170016 0.985441i \(-0.445618\pi\)
0.170016 + 0.985441i \(0.445618\pi\)
\(198\) 0 0
\(199\) 2767.34 0.985788 0.492894 0.870089i \(-0.335939\pi\)
0.492894 + 0.870089i \(0.335939\pi\)
\(200\) 0 0
\(201\) 2737.04 0.960477
\(202\) 0 0
\(203\) −289.751 −0.100180
\(204\) 0 0
\(205\) 1536.93 0.523628
\(206\) 0 0
\(207\) 207.000 0.0695048
\(208\) 0 0
\(209\) 1155.15 0.382313
\(210\) 0 0
\(211\) 4203.62 1.37151 0.685756 0.727831i \(-0.259472\pi\)
0.685756 + 0.727831i \(0.259472\pi\)
\(212\) 0 0
\(213\) −2992.99 −0.962799
\(214\) 0 0
\(215\) 1640.76 0.520460
\(216\) 0 0
\(217\) −1555.31 −0.486549
\(218\) 0 0
\(219\) −879.765 −0.271457
\(220\) 0 0
\(221\) 7257.27 2.20894
\(222\) 0 0
\(223\) 3359.72 1.00889 0.504447 0.863443i \(-0.331696\pi\)
0.504447 + 0.863443i \(0.331696\pi\)
\(224\) 0 0
\(225\) 225.000 0.0666667
\(226\) 0 0
\(227\) 3051.50 0.892227 0.446113 0.894976i \(-0.352808\pi\)
0.446113 + 0.894976i \(0.352808\pi\)
\(228\) 0 0
\(229\) 4440.20 1.28129 0.640647 0.767835i \(-0.278666\pi\)
0.640647 + 0.767835i \(0.278666\pi\)
\(230\) 0 0
\(231\) 313.323 0.0892429
\(232\) 0 0
\(233\) −198.561 −0.0558291 −0.0279146 0.999610i \(-0.508887\pi\)
−0.0279146 + 0.999610i \(0.508887\pi\)
\(234\) 0 0
\(235\) −1171.17 −0.325102
\(236\) 0 0
\(237\) −512.411 −0.140442
\(238\) 0 0
\(239\) 1867.03 0.505306 0.252653 0.967557i \(-0.418697\pi\)
0.252653 + 0.967557i \(0.418697\pi\)
\(240\) 0 0
\(241\) −5651.30 −1.51051 −0.755253 0.655433i \(-0.772486\pi\)
−0.755253 + 0.655433i \(0.772486\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) 1572.72 0.410111
\(246\) 0 0
\(247\) −4289.06 −1.10489
\(248\) 0 0
\(249\) −1729.89 −0.440271
\(250\) 0 0
\(251\) 3032.60 0.762614 0.381307 0.924449i \(-0.375474\pi\)
0.381307 + 0.924449i \(0.375474\pi\)
\(252\) 0 0
\(253\) −450.307 −0.111899
\(254\) 0 0
\(255\) 1497.48 0.367748
\(256\) 0 0
\(257\) −3935.36 −0.955178 −0.477589 0.878583i \(-0.658489\pi\)
−0.477589 + 0.878583i \(0.658489\pi\)
\(258\) 0 0
\(259\) 2235.36 0.536287
\(260\) 0 0
\(261\) −488.852 −0.115935
\(262\) 0 0
\(263\) −4481.85 −1.05081 −0.525404 0.850853i \(-0.676086\pi\)
−0.525404 + 0.850853i \(0.676086\pi\)
\(264\) 0 0
\(265\) −1446.54 −0.335322
\(266\) 0 0
\(267\) −810.530 −0.185781
\(268\) 0 0
\(269\) 5375.20 1.21833 0.609167 0.793042i \(-0.291504\pi\)
0.609167 + 0.793042i \(0.291504\pi\)
\(270\) 0 0
\(271\) −8412.42 −1.88568 −0.942838 0.333252i \(-0.891854\pi\)
−0.942838 + 0.333252i \(0.891854\pi\)
\(272\) 0 0
\(273\) −1163.36 −0.257912
\(274\) 0 0
\(275\) −489.464 −0.107330
\(276\) 0 0
\(277\) −4419.84 −0.958708 −0.479354 0.877622i \(-0.659129\pi\)
−0.479354 + 0.877622i \(0.659129\pi\)
\(278\) 0 0
\(279\) −2624.03 −0.563070
\(280\) 0 0
\(281\) −582.531 −0.123669 −0.0618343 0.998086i \(-0.519695\pi\)
−0.0618343 + 0.998086i \(0.519695\pi\)
\(282\) 0 0
\(283\) 5965.41 1.25303 0.626514 0.779410i \(-0.284481\pi\)
0.626514 + 0.779410i \(0.284481\pi\)
\(284\) 0 0
\(285\) −885.013 −0.183943
\(286\) 0 0
\(287\) −1639.73 −0.337249
\(288\) 0 0
\(289\) 5053.39 1.02858
\(290\) 0 0
\(291\) −229.647 −0.0462617
\(292\) 0 0
\(293\) 6917.24 1.37921 0.689607 0.724184i \(-0.257783\pi\)
0.689607 + 0.724184i \(0.257783\pi\)
\(294\) 0 0
\(295\) −159.061 −0.0313928
\(296\) 0 0
\(297\) 528.621 0.103278
\(298\) 0 0
\(299\) 1671.98 0.323389
\(300\) 0 0
\(301\) −1750.51 −0.335208
\(302\) 0 0
\(303\) −4130.19 −0.783081
\(304\) 0 0
\(305\) −1446.51 −0.271564
\(306\) 0 0
\(307\) −4976.19 −0.925102 −0.462551 0.886593i \(-0.653066\pi\)
−0.462551 + 0.886593i \(0.653066\pi\)
\(308\) 0 0
\(309\) 2677.21 0.492885
\(310\) 0 0
\(311\) −1128.66 −0.205789 −0.102894 0.994692i \(-0.532810\pi\)
−0.102894 + 0.994692i \(0.532810\pi\)
\(312\) 0 0
\(313\) −765.544 −0.138246 −0.0691232 0.997608i \(-0.522020\pi\)
−0.0691232 + 0.997608i \(0.522020\pi\)
\(314\) 0 0
\(315\) −240.050 −0.0429375
\(316\) 0 0
\(317\) 9796.20 1.73568 0.867838 0.496847i \(-0.165509\pi\)
0.867838 + 0.496847i \(0.165509\pi\)
\(318\) 0 0
\(319\) 1063.45 0.186651
\(320\) 0 0
\(321\) −289.664 −0.0503660
\(322\) 0 0
\(323\) −5890.16 −1.01467
\(324\) 0 0
\(325\) 1817.37 0.310184
\(326\) 0 0
\(327\) 543.207 0.0918637
\(328\) 0 0
\(329\) 1249.51 0.209386
\(330\) 0 0
\(331\) −5911.74 −0.981688 −0.490844 0.871248i \(-0.663311\pi\)
−0.490844 + 0.871248i \(0.663311\pi\)
\(332\) 0 0
\(333\) 3771.38 0.620631
\(334\) 0 0
\(335\) 4561.73 0.743982
\(336\) 0 0
\(337\) 11629.1 1.87976 0.939881 0.341502i \(-0.110935\pi\)
0.939881 + 0.341502i \(0.110935\pi\)
\(338\) 0 0
\(339\) 1825.37 0.292450
\(340\) 0 0
\(341\) 5708.30 0.906516
\(342\) 0 0
\(343\) −3507.63 −0.552170
\(344\) 0 0
\(345\) 345.000 0.0538382
\(346\) 0 0
\(347\) −3367.59 −0.520985 −0.260493 0.965476i \(-0.583885\pi\)
−0.260493 + 0.965476i \(0.583885\pi\)
\(348\) 0 0
\(349\) 11221.5 1.72113 0.860566 0.509339i \(-0.170110\pi\)
0.860566 + 0.509339i \(0.170110\pi\)
\(350\) 0 0
\(351\) −1962.76 −0.298475
\(352\) 0 0
\(353\) 5924.29 0.893253 0.446627 0.894720i \(-0.352625\pi\)
0.446627 + 0.894720i \(0.352625\pi\)
\(354\) 0 0
\(355\) −4988.31 −0.745781
\(356\) 0 0
\(357\) −1597.64 −0.236852
\(358\) 0 0
\(359\) 2022.52 0.297339 0.148670 0.988887i \(-0.452501\pi\)
0.148670 + 0.988887i \(0.452501\pi\)
\(360\) 0 0
\(361\) −3377.90 −0.492477
\(362\) 0 0
\(363\) 2843.04 0.411077
\(364\) 0 0
\(365\) −1466.27 −0.210269
\(366\) 0 0
\(367\) −3099.27 −0.440819 −0.220410 0.975407i \(-0.570739\pi\)
−0.220410 + 0.975407i \(0.570739\pi\)
\(368\) 0 0
\(369\) −2766.47 −0.390289
\(370\) 0 0
\(371\) 1543.30 0.215968
\(372\) 0 0
\(373\) 7238.01 1.00474 0.502372 0.864651i \(-0.332461\pi\)
0.502372 + 0.864651i \(0.332461\pi\)
\(374\) 0 0
\(375\) 375.000 0.0516398
\(376\) 0 0
\(377\) −3948.56 −0.539420
\(378\) 0 0
\(379\) −3872.61 −0.524862 −0.262431 0.964951i \(-0.584524\pi\)
−0.262431 + 0.964951i \(0.584524\pi\)
\(380\) 0 0
\(381\) −1573.48 −0.211580
\(382\) 0 0
\(383\) 8139.76 1.08596 0.542980 0.839746i \(-0.317296\pi\)
0.542980 + 0.839746i \(0.317296\pi\)
\(384\) 0 0
\(385\) 522.204 0.0691273
\(386\) 0 0
\(387\) −2953.37 −0.387928
\(388\) 0 0
\(389\) 10811.7 1.40919 0.704597 0.709607i \(-0.251128\pi\)
0.704597 + 0.709607i \(0.251128\pi\)
\(390\) 0 0
\(391\) 2296.13 0.296983
\(392\) 0 0
\(393\) 1240.01 0.159161
\(394\) 0 0
\(395\) −854.018 −0.108786
\(396\) 0 0
\(397\) −7220.25 −0.912780 −0.456390 0.889780i \(-0.650858\pi\)
−0.456390 + 0.889780i \(0.650858\pi\)
\(398\) 0 0
\(399\) 944.211 0.118470
\(400\) 0 0
\(401\) −9300.00 −1.15815 −0.579077 0.815273i \(-0.696587\pi\)
−0.579077 + 0.815273i \(0.696587\pi\)
\(402\) 0 0
\(403\) −21194.9 −2.61983
\(404\) 0 0
\(405\) −405.000 −0.0496904
\(406\) 0 0
\(407\) −8204.24 −0.999187
\(408\) 0 0
\(409\) −356.093 −0.0430506 −0.0215253 0.999768i \(-0.506852\pi\)
−0.0215253 + 0.999768i \(0.506852\pi\)
\(410\) 0 0
\(411\) −6166.88 −0.740121
\(412\) 0 0
\(413\) 169.700 0.0202189
\(414\) 0 0
\(415\) −2883.15 −0.341033
\(416\) 0 0
\(417\) −5077.91 −0.596323
\(418\) 0 0
\(419\) −1550.06 −0.180729 −0.0903646 0.995909i \(-0.528803\pi\)
−0.0903646 + 0.995909i \(0.528803\pi\)
\(420\) 0 0
\(421\) −10184.0 −1.17895 −0.589474 0.807787i \(-0.700665\pi\)
−0.589474 + 0.807787i \(0.700665\pi\)
\(422\) 0 0
\(423\) 2108.11 0.242317
\(424\) 0 0
\(425\) 2495.80 0.284856
\(426\) 0 0
\(427\) 1543.27 0.174904
\(428\) 0 0
\(429\) 4269.79 0.480530
\(430\) 0 0
\(431\) 12913.8 1.44324 0.721622 0.692288i \(-0.243397\pi\)
0.721622 + 0.692288i \(0.243397\pi\)
\(432\) 0 0
\(433\) −542.131 −0.0601689 −0.0300845 0.999547i \(-0.509578\pi\)
−0.0300845 + 0.999547i \(0.509578\pi\)
\(434\) 0 0
\(435\) −814.753 −0.0898032
\(436\) 0 0
\(437\) −1357.02 −0.148547
\(438\) 0 0
\(439\) −3958.04 −0.430312 −0.215156 0.976580i \(-0.569026\pi\)
−0.215156 + 0.976580i \(0.569026\pi\)
\(440\) 0 0
\(441\) −2830.89 −0.305679
\(442\) 0 0
\(443\) 12253.7 1.31420 0.657101 0.753802i \(-0.271782\pi\)
0.657101 + 0.753802i \(0.271782\pi\)
\(444\) 0 0
\(445\) −1350.88 −0.143906
\(446\) 0 0
\(447\) 3553.30 0.375985
\(448\) 0 0
\(449\) −9086.50 −0.955052 −0.477526 0.878618i \(-0.658466\pi\)
−0.477526 + 0.878618i \(0.658466\pi\)
\(450\) 0 0
\(451\) 6018.17 0.628347
\(452\) 0 0
\(453\) −8637.74 −0.895886
\(454\) 0 0
\(455\) −1938.94 −0.199778
\(456\) 0 0
\(457\) 13643.8 1.39656 0.698282 0.715823i \(-0.253948\pi\)
0.698282 + 0.715823i \(0.253948\pi\)
\(458\) 0 0
\(459\) −2695.46 −0.274103
\(460\) 0 0
\(461\) 6709.30 0.677837 0.338919 0.940816i \(-0.389939\pi\)
0.338919 + 0.940816i \(0.389939\pi\)
\(462\) 0 0
\(463\) 1467.75 0.147326 0.0736630 0.997283i \(-0.476531\pi\)
0.0736630 + 0.997283i \(0.476531\pi\)
\(464\) 0 0
\(465\) −4373.38 −0.436152
\(466\) 0 0
\(467\) −8630.84 −0.855219 −0.427610 0.903963i \(-0.640644\pi\)
−0.427610 + 0.903963i \(0.640644\pi\)
\(468\) 0 0
\(469\) −4866.87 −0.479171
\(470\) 0 0
\(471\) −659.850 −0.0645526
\(472\) 0 0
\(473\) 6424.74 0.624545
\(474\) 0 0
\(475\) −1475.02 −0.142481
\(476\) 0 0
\(477\) 2603.77 0.249934
\(478\) 0 0
\(479\) −8399.32 −0.801200 −0.400600 0.916253i \(-0.631198\pi\)
−0.400600 + 0.916253i \(0.631198\pi\)
\(480\) 0 0
\(481\) 30462.2 2.88765
\(482\) 0 0
\(483\) −368.077 −0.0346751
\(484\) 0 0
\(485\) −382.745 −0.0358342
\(486\) 0 0
\(487\) 8900.47 0.828170 0.414085 0.910238i \(-0.364102\pi\)
0.414085 + 0.910238i \(0.364102\pi\)
\(488\) 0 0
\(489\) −2905.91 −0.268732
\(490\) 0 0
\(491\) −12601.9 −1.15828 −0.579140 0.815228i \(-0.696611\pi\)
−0.579140 + 0.815228i \(0.696611\pi\)
\(492\) 0 0
\(493\) −5422.55 −0.495374
\(494\) 0 0
\(495\) 881.035 0.0799992
\(496\) 0 0
\(497\) 5321.98 0.480329
\(498\) 0 0
\(499\) −12056.8 −1.08164 −0.540819 0.841139i \(-0.681886\pi\)
−0.540819 + 0.841139i \(0.681886\pi\)
\(500\) 0 0
\(501\) −4208.66 −0.375307
\(502\) 0 0
\(503\) −696.717 −0.0617596 −0.0308798 0.999523i \(-0.509831\pi\)
−0.0308798 + 0.999523i \(0.509831\pi\)
\(504\) 0 0
\(505\) −6883.66 −0.606572
\(506\) 0 0
\(507\) −9262.67 −0.811380
\(508\) 0 0
\(509\) −10466.9 −0.911466 −0.455733 0.890117i \(-0.650623\pi\)
−0.455733 + 0.890117i \(0.650623\pi\)
\(510\) 0 0
\(511\) 1564.35 0.135427
\(512\) 0 0
\(513\) 1593.02 0.137103
\(514\) 0 0
\(515\) 4462.02 0.381787
\(516\) 0 0
\(517\) −4585.98 −0.390119
\(518\) 0 0
\(519\) −604.617 −0.0511363
\(520\) 0 0
\(521\) −20482.4 −1.72236 −0.861180 0.508300i \(-0.830274\pi\)
−0.861180 + 0.508300i \(0.830274\pi\)
\(522\) 0 0
\(523\) −3297.36 −0.275685 −0.137843 0.990454i \(-0.544017\pi\)
−0.137843 + 0.990454i \(0.544017\pi\)
\(524\) 0 0
\(525\) −400.084 −0.0332592
\(526\) 0 0
\(527\) −29106.9 −2.40591
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) 286.310 0.0233988
\(532\) 0 0
\(533\) −22345.4 −1.81592
\(534\) 0 0
\(535\) −482.774 −0.0390133
\(536\) 0 0
\(537\) −8056.31 −0.647403
\(538\) 0 0
\(539\) 6158.31 0.492129
\(540\) 0 0
\(541\) 6718.73 0.533939 0.266969 0.963705i \(-0.413978\pi\)
0.266969 + 0.963705i \(0.413978\pi\)
\(542\) 0 0
\(543\) −996.159 −0.0787280
\(544\) 0 0
\(545\) 905.345 0.0711573
\(546\) 0 0
\(547\) −14405.5 −1.12602 −0.563010 0.826450i \(-0.690357\pi\)
−0.563010 + 0.826450i \(0.690357\pi\)
\(548\) 0 0
\(549\) 2603.72 0.202412
\(550\) 0 0
\(551\) 3204.74 0.247779
\(552\) 0 0
\(553\) 911.144 0.0700647
\(554\) 0 0
\(555\) 6285.63 0.480739
\(556\) 0 0
\(557\) 711.822 0.0541488 0.0270744 0.999633i \(-0.491381\pi\)
0.0270744 + 0.999633i \(0.491381\pi\)
\(558\) 0 0
\(559\) −23855.0 −1.80493
\(560\) 0 0
\(561\) 5863.69 0.441293
\(562\) 0 0
\(563\) 12247.6 0.916833 0.458416 0.888738i \(-0.348417\pi\)
0.458416 + 0.888738i \(0.348417\pi\)
\(564\) 0 0
\(565\) 3042.28 0.226531
\(566\) 0 0
\(567\) 432.091 0.0320037
\(568\) 0 0
\(569\) 15872.1 1.16940 0.584702 0.811248i \(-0.301211\pi\)
0.584702 + 0.811248i \(0.301211\pi\)
\(570\) 0 0
\(571\) 7197.30 0.527491 0.263746 0.964592i \(-0.415042\pi\)
0.263746 + 0.964592i \(0.415042\pi\)
\(572\) 0 0
\(573\) 2178.68 0.158840
\(574\) 0 0
\(575\) 575.000 0.0417029
\(576\) 0 0
\(577\) −13663.2 −0.985802 −0.492901 0.870085i \(-0.664064\pi\)
−0.492901 + 0.870085i \(0.664064\pi\)
\(578\) 0 0
\(579\) −2713.51 −0.194766
\(580\) 0 0
\(581\) 3076.01 0.219646
\(582\) 0 0
\(583\) −5664.23 −0.402382
\(584\) 0 0
\(585\) −3271.27 −0.231197
\(586\) 0 0
\(587\) 2190.97 0.154056 0.0770280 0.997029i \(-0.475457\pi\)
0.0770280 + 0.997029i \(0.475457\pi\)
\(588\) 0 0
\(589\) 17202.2 1.20340
\(590\) 0 0
\(591\) −2820.58 −0.196317
\(592\) 0 0
\(593\) 4052.46 0.280631 0.140316 0.990107i \(-0.455188\pi\)
0.140316 + 0.990107i \(0.455188\pi\)
\(594\) 0 0
\(595\) −2662.74 −0.183465
\(596\) 0 0
\(597\) −8302.03 −0.569145
\(598\) 0 0
\(599\) 12186.7 0.831277 0.415638 0.909530i \(-0.363558\pi\)
0.415638 + 0.909530i \(0.363558\pi\)
\(600\) 0 0
\(601\) 2704.86 0.183583 0.0917915 0.995778i \(-0.470741\pi\)
0.0917915 + 0.995778i \(0.470741\pi\)
\(602\) 0 0
\(603\) −8211.12 −0.554532
\(604\) 0 0
\(605\) 4738.40 0.318419
\(606\) 0 0
\(607\) −19272.0 −1.28868 −0.644338 0.764741i \(-0.722867\pi\)
−0.644338 + 0.764741i \(0.722867\pi\)
\(608\) 0 0
\(609\) 869.252 0.0578388
\(610\) 0 0
\(611\) 17027.7 1.12744
\(612\) 0 0
\(613\) −16815.8 −1.10797 −0.553985 0.832527i \(-0.686893\pi\)
−0.553985 + 0.832527i \(0.686893\pi\)
\(614\) 0 0
\(615\) −4610.78 −0.302317
\(616\) 0 0
\(617\) 9291.47 0.606257 0.303128 0.952950i \(-0.401969\pi\)
0.303128 + 0.952950i \(0.401969\pi\)
\(618\) 0 0
\(619\) −8105.13 −0.526289 −0.263144 0.964756i \(-0.584760\pi\)
−0.263144 + 0.964756i \(0.584760\pi\)
\(620\) 0 0
\(621\) −621.000 −0.0401286
\(622\) 0 0
\(623\) 1441.24 0.0926842
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) −3465.45 −0.220729
\(628\) 0 0
\(629\) 41833.7 2.65186
\(630\) 0 0
\(631\) −9568.39 −0.603663 −0.301832 0.953361i \(-0.597598\pi\)
−0.301832 + 0.953361i \(0.597598\pi\)
\(632\) 0 0
\(633\) −12610.9 −0.791843
\(634\) 0 0
\(635\) −2622.47 −0.163889
\(636\) 0 0
\(637\) −22865.7 −1.42225
\(638\) 0 0
\(639\) 8978.96 0.555872
\(640\) 0 0
\(641\) 12140.3 0.748073 0.374036 0.927414i \(-0.377974\pi\)
0.374036 + 0.927414i \(0.377974\pi\)
\(642\) 0 0
\(643\) −831.517 −0.0509982 −0.0254991 0.999675i \(-0.508117\pi\)
−0.0254991 + 0.999675i \(0.508117\pi\)
\(644\) 0 0
\(645\) −4922.28 −0.300487
\(646\) 0 0
\(647\) −19372.5 −1.17714 −0.588572 0.808445i \(-0.700310\pi\)
−0.588572 + 0.808445i \(0.700310\pi\)
\(648\) 0 0
\(649\) −622.837 −0.0376710
\(650\) 0 0
\(651\) 4665.92 0.280909
\(652\) 0 0
\(653\) 26157.3 1.56756 0.783779 0.621040i \(-0.213290\pi\)
0.783779 + 0.621040i \(0.213290\pi\)
\(654\) 0 0
\(655\) 2066.69 0.123286
\(656\) 0 0
\(657\) 2639.29 0.156726
\(658\) 0 0
\(659\) −9968.27 −0.589239 −0.294620 0.955615i \(-0.595193\pi\)
−0.294620 + 0.955615i \(0.595193\pi\)
\(660\) 0 0
\(661\) −25233.7 −1.48484 −0.742420 0.669935i \(-0.766322\pi\)
−0.742420 + 0.669935i \(0.766322\pi\)
\(662\) 0 0
\(663\) −21771.8 −1.27533
\(664\) 0 0
\(665\) 1573.69 0.0917668
\(666\) 0 0
\(667\) −1249.29 −0.0725226
\(668\) 0 0
\(669\) −10079.1 −0.582485
\(670\) 0 0
\(671\) −5664.13 −0.325874
\(672\) 0 0
\(673\) 5349.47 0.306399 0.153200 0.988195i \(-0.451042\pi\)
0.153200 + 0.988195i \(0.451042\pi\)
\(674\) 0 0
\(675\) −675.000 −0.0384900
\(676\) 0 0
\(677\) 24986.9 1.41850 0.709251 0.704956i \(-0.249033\pi\)
0.709251 + 0.704956i \(0.249033\pi\)
\(678\) 0 0
\(679\) 408.347 0.0230794
\(680\) 0 0
\(681\) −9154.51 −0.515127
\(682\) 0 0
\(683\) 29567.7 1.65648 0.828240 0.560374i \(-0.189343\pi\)
0.828240 + 0.560374i \(0.189343\pi\)
\(684\) 0 0
\(685\) −10278.1 −0.573295
\(686\) 0 0
\(687\) −13320.6 −0.739756
\(688\) 0 0
\(689\) 21031.2 1.16288
\(690\) 0 0
\(691\) 14797.7 0.814663 0.407332 0.913280i \(-0.366459\pi\)
0.407332 + 0.913280i \(0.366459\pi\)
\(692\) 0 0
\(693\) −939.968 −0.0515244
\(694\) 0 0
\(695\) −8463.19 −0.461910
\(696\) 0 0
\(697\) −30686.8 −1.66764
\(698\) 0 0
\(699\) 595.684 0.0322330
\(700\) 0 0
\(701\) 5348.06 0.288151 0.144075 0.989567i \(-0.453979\pi\)
0.144075 + 0.989567i \(0.453979\pi\)
\(702\) 0 0
\(703\) −24723.8 −1.32642
\(704\) 0 0
\(705\) 3513.52 0.187698
\(706\) 0 0
\(707\) 7344.11 0.390670
\(708\) 0 0
\(709\) −13022.5 −0.689803 −0.344901 0.938639i \(-0.612088\pi\)
−0.344901 + 0.938639i \(0.612088\pi\)
\(710\) 0 0
\(711\) 1537.23 0.0810840
\(712\) 0 0
\(713\) −6705.85 −0.352225
\(714\) 0 0
\(715\) 7116.32 0.372217
\(716\) 0 0
\(717\) −5601.09 −0.291738
\(718\) 0 0
\(719\) 19525.0 1.01274 0.506370 0.862317i \(-0.330987\pi\)
0.506370 + 0.862317i \(0.330987\pi\)
\(720\) 0 0
\(721\) −4760.49 −0.245894
\(722\) 0 0
\(723\) 16953.9 0.872091
\(724\) 0 0
\(725\) −1357.92 −0.0695613
\(726\) 0 0
\(727\) 33424.3 1.70514 0.852571 0.522611i \(-0.175042\pi\)
0.852571 + 0.522611i \(0.175042\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −32760.0 −1.65755
\(732\) 0 0
\(733\) 12295.6 0.619576 0.309788 0.950806i \(-0.399742\pi\)
0.309788 + 0.950806i \(0.399742\pi\)
\(734\) 0 0
\(735\) −4718.15 −0.236778
\(736\) 0 0
\(737\) 17862.4 0.892770
\(738\) 0 0
\(739\) 7219.24 0.359356 0.179678 0.983726i \(-0.442494\pi\)
0.179678 + 0.983726i \(0.442494\pi\)
\(740\) 0 0
\(741\) 12867.2 0.637906
\(742\) 0 0
\(743\) 11627.8 0.574137 0.287069 0.957910i \(-0.407319\pi\)
0.287069 + 0.957910i \(0.407319\pi\)
\(744\) 0 0
\(745\) 5922.16 0.291237
\(746\) 0 0
\(747\) 5189.68 0.254191
\(748\) 0 0
\(749\) 515.066 0.0251270
\(750\) 0 0
\(751\) −27208.0 −1.32202 −0.661009 0.750378i \(-0.729871\pi\)
−0.661009 + 0.750378i \(0.729871\pi\)
\(752\) 0 0
\(753\) −9097.80 −0.440295
\(754\) 0 0
\(755\) −14396.2 −0.693950
\(756\) 0 0
\(757\) −6194.66 −0.297422 −0.148711 0.988881i \(-0.547512\pi\)
−0.148711 + 0.988881i \(0.547512\pi\)
\(758\) 0 0
\(759\) 1350.92 0.0646052
\(760\) 0 0
\(761\) −17525.6 −0.834827 −0.417414 0.908717i \(-0.637063\pi\)
−0.417414 + 0.908717i \(0.637063\pi\)
\(762\) 0 0
\(763\) −965.904 −0.0458297
\(764\) 0 0
\(765\) −4492.43 −0.212319
\(766\) 0 0
\(767\) 2312.59 0.108869
\(768\) 0 0
\(769\) −1861.50 −0.0872919 −0.0436459 0.999047i \(-0.513897\pi\)
−0.0436459 + 0.999047i \(0.513897\pi\)
\(770\) 0 0
\(771\) 11806.1 0.551472
\(772\) 0 0
\(773\) −19051.4 −0.886457 −0.443228 0.896409i \(-0.646167\pi\)
−0.443228 + 0.896409i \(0.646167\pi\)
\(774\) 0 0
\(775\) −7288.97 −0.337842
\(776\) 0 0
\(777\) −6706.07 −0.309626
\(778\) 0 0
\(779\) 18136.0 0.834133
\(780\) 0 0
\(781\) −19532.8 −0.894928
\(782\) 0 0
\(783\) 1466.55 0.0669354
\(784\) 0 0
\(785\) −1099.75 −0.0500023
\(786\) 0 0
\(787\) −1393.53 −0.0631180 −0.0315590 0.999502i \(-0.510047\pi\)
−0.0315590 + 0.999502i \(0.510047\pi\)
\(788\) 0 0
\(789\) 13445.5 0.606685
\(790\) 0 0
\(791\) −3245.78 −0.145900
\(792\) 0 0
\(793\) 21030.9 0.941775
\(794\) 0 0
\(795\) 4339.62 0.193598
\(796\) 0 0
\(797\) −36281.1 −1.61248 −0.806238 0.591591i \(-0.798500\pi\)
−0.806238 + 0.591591i \(0.798500\pi\)
\(798\) 0 0
\(799\) 23384.1 1.03538
\(800\) 0 0
\(801\) 2431.59 0.107261
\(802\) 0 0
\(803\) −5741.51 −0.252321
\(804\) 0 0
\(805\) −613.462 −0.0268592
\(806\) 0 0
\(807\) −16125.6 −0.703405
\(808\) 0 0
\(809\) −2859.49 −0.124270 −0.0621349 0.998068i \(-0.519791\pi\)
−0.0621349 + 0.998068i \(0.519791\pi\)
\(810\) 0 0
\(811\) −22565.3 −0.977032 −0.488516 0.872555i \(-0.662462\pi\)
−0.488516 + 0.872555i \(0.662462\pi\)
\(812\) 0 0
\(813\) 25237.3 1.08870
\(814\) 0 0
\(815\) −4843.18 −0.208159
\(816\) 0 0
\(817\) 19361.2 0.829086
\(818\) 0 0
\(819\) 3490.09 0.148905
\(820\) 0 0
\(821\) 19088.7 0.811448 0.405724 0.913996i \(-0.367019\pi\)
0.405724 + 0.913996i \(0.367019\pi\)
\(822\) 0 0
\(823\) −42310.6 −1.79205 −0.896024 0.444006i \(-0.853557\pi\)
−0.896024 + 0.444006i \(0.853557\pi\)
\(824\) 0 0
\(825\) 1468.39 0.0619671
\(826\) 0 0
\(827\) −23295.0 −0.979499 −0.489749 0.871863i \(-0.662912\pi\)
−0.489749 + 0.871863i \(0.662912\pi\)
\(828\) 0 0
\(829\) 5637.45 0.236184 0.118092 0.993003i \(-0.462322\pi\)
0.118092 + 0.993003i \(0.462322\pi\)
\(830\) 0 0
\(831\) 13259.5 0.553510
\(832\) 0 0
\(833\) −31401.5 −1.30612
\(834\) 0 0
\(835\) −7014.43 −0.290712
\(836\) 0 0
\(837\) 7872.09 0.325089
\(838\) 0 0
\(839\) −6417.98 −0.264092 −0.132046 0.991244i \(-0.542155\pi\)
−0.132046 + 0.991244i \(0.542155\pi\)
\(840\) 0 0
\(841\) −21438.7 −0.879031
\(842\) 0 0
\(843\) 1747.59 0.0714001
\(844\) 0 0
\(845\) −15437.8 −0.628493
\(846\) 0 0
\(847\) −5055.35 −0.205081
\(848\) 0 0
\(849\) −17896.2 −0.723436
\(850\) 0 0
\(851\) 9637.96 0.388232
\(852\) 0 0
\(853\) 37124.5 1.49018 0.745088 0.666966i \(-0.232408\pi\)
0.745088 + 0.666966i \(0.232408\pi\)
\(854\) 0 0
\(855\) 2655.04 0.106199
\(856\) 0 0
\(857\) −33366.5 −1.32996 −0.664980 0.746861i \(-0.731560\pi\)
−0.664980 + 0.746861i \(0.731560\pi\)
\(858\) 0 0
\(859\) −15103.4 −0.599907 −0.299954 0.953954i \(-0.596971\pi\)
−0.299954 + 0.953954i \(0.596971\pi\)
\(860\) 0 0
\(861\) 4919.20 0.194711
\(862\) 0 0
\(863\) 37049.4 1.46139 0.730694 0.682705i \(-0.239197\pi\)
0.730694 + 0.682705i \(0.239197\pi\)
\(864\) 0 0
\(865\) −1007.70 −0.0396100
\(866\) 0 0
\(867\) −15160.2 −0.593848
\(868\) 0 0
\(869\) −3344.09 −0.130541
\(870\) 0 0
\(871\) −66323.0 −2.58010
\(872\) 0 0
\(873\) 688.942 0.0267092
\(874\) 0 0
\(875\) −666.806 −0.0257625
\(876\) 0 0
\(877\) 4230.97 0.162907 0.0814536 0.996677i \(-0.474044\pi\)
0.0814536 + 0.996677i \(0.474044\pi\)
\(878\) 0 0
\(879\) −20751.7 −0.796290
\(880\) 0 0
\(881\) 39217.2 1.49973 0.749863 0.661593i \(-0.230119\pi\)
0.749863 + 0.661593i \(0.230119\pi\)
\(882\) 0 0
\(883\) 30463.4 1.16101 0.580506 0.814256i \(-0.302855\pi\)
0.580506 + 0.814256i \(0.302855\pi\)
\(884\) 0 0
\(885\) 477.183 0.0181247
\(886\) 0 0
\(887\) −9984.21 −0.377945 −0.188972 0.981982i \(-0.560516\pi\)
−0.188972 + 0.981982i \(0.560516\pi\)
\(888\) 0 0
\(889\) 2797.89 0.105555
\(890\) 0 0
\(891\) −1585.86 −0.0596279
\(892\) 0 0
\(893\) −13820.1 −0.517884
\(894\) 0 0
\(895\) −13427.2 −0.501476
\(896\) 0 0
\(897\) −5015.95 −0.186709
\(898\) 0 0
\(899\) 15836.6 0.587518
\(900\) 0 0
\(901\) 28882.1 1.06793
\(902\) 0 0
\(903\) 5251.53 0.193533
\(904\) 0 0
\(905\) −1660.27 −0.0609824
\(906\) 0 0
\(907\) 17646.0 0.646004 0.323002 0.946398i \(-0.395308\pi\)
0.323002 + 0.946398i \(0.395308\pi\)
\(908\) 0 0
\(909\) 12390.6 0.452112
\(910\) 0 0
\(911\) 7294.52 0.265289 0.132644 0.991164i \(-0.457653\pi\)
0.132644 + 0.991164i \(0.457653\pi\)
\(912\) 0 0
\(913\) −11289.6 −0.409235
\(914\) 0 0
\(915\) 4339.54 0.156788
\(916\) 0 0
\(917\) −2204.93 −0.0794038
\(918\) 0 0
\(919\) 49116.7 1.76301 0.881507 0.472172i \(-0.156530\pi\)
0.881507 + 0.472172i \(0.156530\pi\)
\(920\) 0 0
\(921\) 14928.6 0.534108
\(922\) 0 0
\(923\) 72525.0 2.58634
\(924\) 0 0
\(925\) 10476.0 0.372379
\(926\) 0 0
\(927\) −8031.64 −0.284567
\(928\) 0 0
\(929\) 11334.4 0.400292 0.200146 0.979766i \(-0.435858\pi\)
0.200146 + 0.979766i \(0.435858\pi\)
\(930\) 0 0
\(931\) 18558.3 0.653303
\(932\) 0 0
\(933\) 3385.97 0.118812
\(934\) 0 0
\(935\) 9772.82 0.341824
\(936\) 0 0
\(937\) 5734.39 0.199930 0.0999649 0.994991i \(-0.468127\pi\)
0.0999649 + 0.994991i \(0.468127\pi\)
\(938\) 0 0
\(939\) 2296.63 0.0798165
\(940\) 0 0
\(941\) −5321.13 −0.184340 −0.0921699 0.995743i \(-0.529380\pi\)
−0.0921699 + 0.995743i \(0.529380\pi\)
\(942\) 0 0
\(943\) −7069.87 −0.244143
\(944\) 0 0
\(945\) 720.151 0.0247900
\(946\) 0 0
\(947\) −23428.4 −0.803931 −0.401965 0.915655i \(-0.631673\pi\)
−0.401965 + 0.915655i \(0.631673\pi\)
\(948\) 0 0
\(949\) 21318.2 0.729206
\(950\) 0 0
\(951\) −29388.6 −1.00209
\(952\) 0 0
\(953\) −43819.7 −1.48947 −0.744733 0.667363i \(-0.767423\pi\)
−0.744733 + 0.667363i \(0.767423\pi\)
\(954\) 0 0
\(955\) 3631.13 0.123037
\(956\) 0 0
\(957\) −3190.34 −0.107763
\(958\) 0 0
\(959\) 10965.6 0.369238
\(960\) 0 0
\(961\) 55215.6 1.85343
\(962\) 0 0
\(963\) 868.992 0.0290788
\(964\) 0 0
\(965\) −4522.52 −0.150865
\(966\) 0 0
\(967\) 619.308 0.0205953 0.0102976 0.999947i \(-0.496722\pi\)
0.0102976 + 0.999947i \(0.496722\pi\)
\(968\) 0 0
\(969\) 17670.5 0.585818
\(970\) 0 0
\(971\) 48097.4 1.58962 0.794809 0.606860i \(-0.207571\pi\)
0.794809 + 0.606860i \(0.207571\pi\)
\(972\) 0 0
\(973\) 9029.29 0.297498
\(974\) 0 0
\(975\) −5452.12 −0.179085
\(976\) 0 0
\(977\) 12985.3 0.425218 0.212609 0.977137i \(-0.431804\pi\)
0.212609 + 0.977137i \(0.431804\pi\)
\(978\) 0 0
\(979\) −5289.67 −0.172685
\(980\) 0 0
\(981\) −1629.62 −0.0530375
\(982\) 0 0
\(983\) −33636.4 −1.09139 −0.545695 0.837984i \(-0.683734\pi\)
−0.545695 + 0.837984i \(0.683734\pi\)
\(984\) 0 0
\(985\) −4700.97 −0.152067
\(986\) 0 0
\(987\) −3748.54 −0.120889
\(988\) 0 0
\(989\) −7547.49 −0.242666
\(990\) 0 0
\(991\) −30371.4 −0.973541 −0.486771 0.873530i \(-0.661825\pi\)
−0.486771 + 0.873530i \(0.661825\pi\)
\(992\) 0 0
\(993\) 17735.2 0.566778
\(994\) 0 0
\(995\) −13836.7 −0.440858
\(996\) 0 0
\(997\) −21257.1 −0.675243 −0.337622 0.941282i \(-0.609622\pi\)
−0.337622 + 0.941282i \(0.609622\pi\)
\(998\) 0 0
\(999\) −11314.1 −0.358322
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1380.4.a.e.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1380.4.a.e.1.3 5 1.1 even 1 trivial