Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(1380, [\chi])\).
|
Total |
New |
Old |
Modular forms
| 588 |
32 |
556 |
Cusp forms
| 564 |
32 |
532 |
Eisenstein series
| 24 |
0 |
24 |
\( S_{3}^{\mathrm{old}}(1380, [\chi]) \simeq \)
\(S_{3}^{\mathrm{new}}(23, [\chi])\)\(^{\oplus 12}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(46, [\chi])\)\(^{\oplus 8}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(69, [\chi])\)\(^{\oplus 6}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(92, [\chi])\)\(^{\oplus 4}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(115, [\chi])\)\(^{\oplus 6}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(138, [\chi])\)\(^{\oplus 4}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(230, [\chi])\)\(^{\oplus 4}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(276, [\chi])\)\(^{\oplus 2}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(345, [\chi])\)\(^{\oplus 3}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(460, [\chi])\)\(^{\oplus 2}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(690, [\chi])\)\(^{\oplus 2}\)