Properties

Label 1380.3.d
Level $1380$
Weight $3$
Character orbit 1380.d
Rep. character $\chi_{1380}(781,\cdot)$
Character field $\Q$
Dimension $32$
Newform subspaces $1$
Sturm bound $864$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1380 = 2^{2} \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1380.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 23 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(864\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(1380, [\chi])\).

Total New Old
Modular forms 588 32 556
Cusp forms 564 32 532
Eisenstein series 24 0 24

Trace form

\( 32 q + 96 q^{9} + 24 q^{13} + 64 q^{23} - 160 q^{25} - 60 q^{29} - 4 q^{31} - 60 q^{35} - 48 q^{39} - 108 q^{41} + 136 q^{47} - 428 q^{49} + 120 q^{55} - 84 q^{59} + 48 q^{69} + 188 q^{71} + 472 q^{73}+ \cdots + 80 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(1380, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1380.3.d.a 1380.d 23.b $32$ $37.602$ None 1380.3.d.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{3}^{\mathrm{old}}(1380, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(1380, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(23, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(46, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(69, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(92, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(115, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(138, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(230, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(276, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(345, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(460, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(690, [\chi])\)\(^{\oplus 2}\)