Properties

Label 138.3
Level 138
Weight 3
Dimension 264
Nonzero newspaces 4
Newform subspaces 4
Sturm bound 3168
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 138 = 2 \cdot 3 \cdot 23 \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 4 \)
Sturm bound: \(3168\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(138))\).

Total New Old
Modular forms 1144 264 880
Cusp forms 968 264 704
Eisenstein series 176 0 176

Trace form

\( 264 q + 154 q^{15} + 220 q^{17} + 176 q^{18} + 132 q^{19} + 88 q^{20} + 66 q^{21} - 88 q^{23} - 264 q^{25} - 176 q^{26} - 330 q^{27} - 264 q^{28} - 308 q^{29} - 352 q^{30} - 396 q^{31} - 242 q^{33} + 440 q^{35}+ \cdots + 132 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(138))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
138.3.b \(\chi_{138}(91, \cdot)\) 138.3.b.a 8 1
138.3.c \(\chi_{138}(47, \cdot)\) 138.3.c.a 16 1
138.3.g \(\chi_{138}(29, \cdot)\) 138.3.g.a 160 10
138.3.h \(\chi_{138}(7, \cdot)\) 138.3.h.a 80 10

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(138))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(138)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(46))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(69))\)\(^{\oplus 2}\)