gp:[N,k,chi] = [13650,2,Mod(1,13650)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
         
     
    
    
        
        magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("13650.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
         
     
    
    
        
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(13650, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a") 
         
     
    
 Newform invariants 
    
    
    
        
        sage:traces = [1,-1,-1,1,0,1,1,-1,1,0,2,-1,1,-1,0,1,6,-1,4,0,-1,-2,-2,1,0,-1,
-1,1,6,0,8,-1,-2,-6,0,1,6,-4,-1,0,2,1,6,2,0,2,2,-1,1,0,-6,1,4,1,0,-1,-4,
-6,12,0,0,-8,1,1,0,2,-8,6,2,0,4,-1,4,-6,0,4,2,1,8,0,1,-2,-12,-1,0,-6,-6,
-2,-10,0,1,-2,-8,-2,0,1,0,-1,2,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
         
     
    
    
        
        gp:f = lf[1] \\ Warning: the index may be different
         
     
    
  
    
    
    
        
        sage:f.q_expansion() # note that sage often uses an isomorphic number field
         
     
    
    
        
        gp:mfcoefs(f, 20)
         
     
    
    
   
  
    
      |  \( p \)  | 
      Sign
     | 
  
  
        
      |  \(2\)  | 
       \( +1 \) | 
    
        
      |  \(3\)  | 
       \( +1 \) | 
    
        
      |  \(5\)  | 
       \( -1 \) | 
    
        
      |  \(7\)  | 
       \( -1 \) | 
    
        
      |  \(13\)  | 
       \( -1 \) | 
    
      
Inner twists of this newform have not been computed.
Twists of this newform have not been computed.