Properties

Label 1360.2.z
Level $1360$
Weight $2$
Character orbit 1360.z
Rep. character $\chi_{1360}(149,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $424$
Sturm bound $432$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1360 = 2^{4} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1360.z (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 1360 \)
Character field: \(\Q(i)\)
Sturm bound: \(432\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1360, [\chi])\).

Total New Old
Modular forms 440 440 0
Cusp forms 424 424 0
Eisenstein series 16 16 0

Trace form

\( 424 q - 8 q^{4} - 408 q^{9} - 6 q^{10} - 8 q^{11} + 12 q^{14} - 16 q^{16} + 6 q^{20} - 8 q^{21} + 12 q^{24} - 8 q^{29} + 8 q^{30} - 8 q^{31} - 12 q^{34} - 4 q^{35} + 24 q^{36} + 24 q^{39} + 18 q^{40} - 56 q^{44}+ \cdots - 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1360, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.