Properties

Label 1360.2.x
Level $1360$
Weight $2$
Character orbit 1360.x
Rep. character $\chi_{1360}(307,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $384$
Sturm bound $432$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1360 = 2^{4} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1360.x (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 80 \)
Character field: \(\Q(i)\)
Sturm bound: \(432\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1360, [\chi])\).

Total New Old
Modular forms 440 384 56
Cusp forms 424 384 40
Eisenstein series 16 0 16

Trace form

\( 384 q + 12 q^{8} - 384 q^{9} - 16 q^{12} - 28 q^{18} - 12 q^{20} + 4 q^{22} + 32 q^{26} + 12 q^{28} - 36 q^{30} - 24 q^{35} - 40 q^{38} - 60 q^{40} - 60 q^{42} + 64 q^{43} - 80 q^{44} + 48 q^{47} - 28 q^{48}+ \cdots + 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1360, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1360, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1360, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 2}\)