Properties

Label 1360.2.v
Level $1360$
Weight $2$
Character orbit 1360.v
Rep. character $\chi_{1360}(747,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $424$
Sturm bound $432$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1360 = 2^{4} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1360.v (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 1360 \)
Character field: \(\Q(i)\)
Sturm bound: \(432\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1360, [\chi])\).

Total New Old
Modular forms 440 440 0
Cusp forms 424 424 0
Eisenstein series 16 16 0

Trace form

\( 424 q - 4 q^{2} - 8 q^{4} - 4 q^{8} - 408 q^{9} + 24 q^{15} - 16 q^{16} - 4 q^{17} - 16 q^{19} - 8 q^{21} - 8 q^{26} + 60 q^{30} - 24 q^{32} - 8 q^{33} + 24 q^{34} - 24 q^{35} - 8 q^{36} - 24 q^{38} + 60 q^{42}+ \cdots - 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1360, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.