Properties

Label 1360.2.q
Level $1360$
Weight $2$
Character orbit 1360.q
Rep. character $\chi_{1360}(47,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $108$
Sturm bound $432$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1360 = 2^{4} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1360.q (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 340 \)
Character field: \(\Q(i)\)
Sturm bound: \(432\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1360, [\chi])\).

Total New Old
Modular forms 456 108 348
Cusp forms 408 108 300
Eisenstein series 48 0 48

Trace form

\( 108 q - 6 q^{5} - 108 q^{9} + 6 q^{17} + 30 q^{45} - 108 q^{49} - 12 q^{65} + 12 q^{73} + 108 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1360, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1360, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1360, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(340, [\chi])\)\(^{\oplus 3}\)