Properties

Label 1360.2.ep
Level $1360$
Weight $2$
Character orbit 1360.ep
Rep. character $\chi_{1360}(31,\cdot)$
Character field $\Q(\zeta_{16})$
Dimension $288$
Sturm bound $432$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1360 = 2^{4} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1360.ep (of order \(16\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 68 \)
Character field: \(\Q(\zeta_{16})\)
Sturm bound: \(432\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1360, [\chi])\).

Total New Old
Modular forms 1824 288 1536
Cusp forms 1632 288 1344
Eisenstein series 192 0 192

Trace form

\( 288 q + 96 q^{57} + 192 q^{61} + 384 q^{69} + 192 q^{77} + 96 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1360, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1360, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1360, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(68, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(272, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(340, [\chi])\)\(^{\oplus 3}\)