Defining parameters
Level: | \( N \) | \(=\) | \( 1360 = 2^{4} \cdot 5 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1360.ep (of order \(16\) and degree \(8\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 68 \) |
Character field: | \(\Q(\zeta_{16})\) | ||
Sturm bound: | \(432\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1360, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1824 | 288 | 1536 |
Cusp forms | 1632 | 288 | 1344 |
Eisenstein series | 192 | 0 | 192 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1360, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(1360, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1360, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(68, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(272, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(340, [\chi])\)\(^{\oplus 3}\)