Properties

Label 1360.2.eb
Level $1360$
Weight $2$
Character orbit 1360.eb
Rep. character $\chi_{1360}(11,\cdot)$
Character field $\Q(\zeta_{16})$
Dimension $1152$
Sturm bound $432$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1360 = 2^{4} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1360.eb (of order \(16\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 272 \)
Character field: \(\Q(\zeta_{16})\)
Sturm bound: \(432\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1360, [\chi])\).

Total New Old
Modular forms 1760 1152 608
Cusp forms 1696 1152 544
Eisenstein series 64 0 64

Trace form

\( 1152 q + 16 q^{6} - 32 q^{19} - 16 q^{24} + 96 q^{28} + 64 q^{36} - 80 q^{38} + 32 q^{44} + 160 q^{51} + 128 q^{58} - 16 q^{60} + 64 q^{61} - 80 q^{62} - 96 q^{64} + 208 q^{72} - 192 q^{82} + 160 q^{83}+ \cdots - 272 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1360, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1360, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1360, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(272, [\chi])\)\(^{\oplus 2}\)