Properties

Label 136.2.o
Level $136$
Weight $2$
Character orbit 136.o
Rep. character $\chi_{136}(53,\cdot)$
Character field $\Q(\zeta_{8})$
Dimension $64$
Newform subspaces $1$
Sturm bound $36$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 136 = 2^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 136.o (of order \(8\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 136 \)
Character field: \(\Q(\zeta_{8})\)
Newform subspaces: \( 1 \)
Sturm bound: \(36\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(136, [\chi])\).

Total New Old
Modular forms 80 80 0
Cusp forms 64 64 0
Eisenstein series 16 16 0

Trace form

\( 64 q - 4 q^{2} - 12 q^{6} - 8 q^{7} - 4 q^{8} - 8 q^{9} - 4 q^{10} - 16 q^{12} + 12 q^{14} - 8 q^{15} - 8 q^{16} - 8 q^{17} - 8 q^{18} - 20 q^{20} + 20 q^{22} - 8 q^{23} + 8 q^{24} + 4 q^{26} - 12 q^{28}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(136, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
136.2.o.a 136.o 136.o $64$ $1.086$ None 136.2.o.a \(-4\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{8}]$