Properties

Label 13552.2.a
Level $13552$
Weight $2$
Character orbit 13552.a
Rep. character $\chi_{13552}(1,\cdot)$
Character field $\Q$
Dimension $327$
Newform subspaces $106$
Sturm bound $4224$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 13552 = 2^{4} \cdot 7 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 13552.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 106 \)
Sturm bound: \(4224\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(13552))\).

Total New Old
Modular forms 2184 327 1857
Cusp forms 2041 327 1714
Eisenstein series 143 0 143

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(7\)\(11\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(264\)\(42\)\(222\)\(247\)\(42\)\(205\)\(17\)\(0\)\(17\)
\(+\)\(+\)\(-\)\(-\)\(279\)\(40\)\(239\)\(261\)\(40\)\(221\)\(18\)\(0\)\(18\)
\(+\)\(-\)\(+\)\(-\)\(282\)\(42\)\(240\)\(264\)\(42\)\(222\)\(18\)\(0\)\(18\)
\(+\)\(-\)\(-\)\(+\)\(267\)\(40\)\(227\)\(249\)\(40\)\(209\)\(18\)\(0\)\(18\)
\(-\)\(+\)\(+\)\(-\)\(270\)\(41\)\(229\)\(252\)\(41\)\(211\)\(18\)\(0\)\(18\)
\(-\)\(+\)\(-\)\(+\)\(275\)\(40\)\(235\)\(257\)\(40\)\(217\)\(18\)\(0\)\(18\)
\(-\)\(-\)\(+\)\(+\)\(276\)\(37\)\(239\)\(258\)\(37\)\(221\)\(18\)\(0\)\(18\)
\(-\)\(-\)\(-\)\(-\)\(271\)\(45\)\(226\)\(253\)\(45\)\(208\)\(18\)\(0\)\(18\)
Plus space\(+\)\(1082\)\(159\)\(923\)\(1011\)\(159\)\(852\)\(71\)\(0\)\(71\)
Minus space\(-\)\(1102\)\(168\)\(934\)\(1030\)\(168\)\(862\)\(72\)\(0\)\(72\)

Trace form

\( 327 q - 2 q^{5} + q^{7} + 331 q^{9} - 2 q^{13} - 16 q^{15} + 6 q^{17} - 8 q^{19} - 4 q^{23} + 329 q^{25} - 24 q^{27} - 6 q^{29} - 8 q^{31} - 6 q^{35} - 14 q^{37} - 16 q^{39} - 2 q^{41} + 12 q^{43} - 10 q^{45}+ \cdots + 22 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(13552))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 7 11
13552.2.a.a 13552.a 1.a $1$ $108.213$ \(\Q\) None \(0\) \(-3\) \(2\) \(-1\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}+2q^{5}-q^{7}+6q^{9}-5q^{13}+\cdots\)
13552.2.a.b 13552.a 1.a $1$ $108.213$ \(\Q\) None \(0\) \(-3\) \(2\) \(1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}+2q^{5}+q^{7}+6q^{9}+5q^{13}+\cdots\)
13552.2.a.c 13552.a 1.a $1$ $108.213$ \(\Q\) None \(0\) \(-2\) \(-4\) \(1\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{3}-4q^{5}+q^{7}+q^{9}+8q^{15}+\cdots\)
13552.2.a.d 13552.a 1.a $1$ $108.213$ \(\Q\) None \(0\) \(-2\) \(-2\) \(-1\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{3}-2q^{5}-q^{7}+q^{9}-4q^{13}+\cdots\)
13552.2.a.e 13552.a 1.a $1$ $108.213$ \(\Q\) None \(0\) \(-2\) \(2\) \(-1\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{3}+2q^{5}-q^{7}+q^{9}+4q^{13}+\cdots\)
13552.2.a.f 13552.a 1.a $1$ $108.213$ \(\Q\) None \(0\) \(-2\) \(2\) \(1\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{3}+2q^{5}+q^{7}+q^{9}-4q^{15}+\cdots\)
13552.2.a.g 13552.a 1.a $1$ $108.213$ \(\Q\) None \(0\) \(-1\) \(1\) \(-1\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{5}-q^{7}-2q^{9}-q^{15}+8q^{19}+\cdots\)
13552.2.a.h 13552.a 1.a $1$ $108.213$ \(\Q\) None \(0\) \(-1\) \(1\) \(1\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{5}+q^{7}-2q^{9}-q^{15}-8q^{19}+\cdots\)
13552.2.a.i 13552.a 1.a $1$ $108.213$ \(\Q\) None \(0\) \(-1\) \(3\) \(1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+3q^{5}+q^{7}-2q^{9}+4q^{13}+\cdots\)
13552.2.a.j 13552.a 1.a $1$ $108.213$ \(\Q\) None \(0\) \(0\) \(-4\) \(-1\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-4q^{5}-q^{7}-3q^{9}-2q^{13}+4q^{17}+\cdots\)
13552.2.a.k 13552.a 1.a $1$ $108.213$ \(\Q\) None \(0\) \(0\) \(-2\) \(1\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{5}+q^{7}-3q^{9}-2q^{13}+2q^{17}+\cdots\)
13552.2.a.l 13552.a 1.a $1$ $108.213$ \(\Q\) None \(0\) \(0\) \(-1\) \(-1\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{5}-q^{7}-3q^{9}+q^{13}+q^{17}-4q^{23}+\cdots\)
13552.2.a.m 13552.a 1.a $1$ $108.213$ \(\Q\) None \(0\) \(0\) \(-1\) \(1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{5}+q^{7}-3q^{9}-q^{13}-q^{17}-4q^{23}+\cdots\)
13552.2.a.n 13552.a 1.a $1$ $108.213$ \(\Q\) None \(0\) \(0\) \(0\) \(-1\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{7}-3q^{9}+6q^{13}-2q^{19}-4q^{23}+\cdots\)
13552.2.a.o 13552.a 1.a $1$ $108.213$ \(\Q\) None \(0\) \(0\) \(2\) \(-1\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{5}-q^{7}-3q^{9}-2q^{13}-2q^{17}+\cdots\)
13552.2.a.p 13552.a 1.a $1$ $108.213$ \(\Q\) None \(0\) \(0\) \(2\) \(-1\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{5}-q^{7}-3q^{9}-2q^{13}+6q^{17}+\cdots\)
13552.2.a.q 13552.a 1.a $1$ $108.213$ \(\Q\) None \(0\) \(1\) \(-1\) \(-1\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{5}-q^{7}-2q^{9}+4q^{13}-q^{15}+\cdots\)
13552.2.a.r 13552.a 1.a $1$ $108.213$ \(\Q\) None \(0\) \(1\) \(-1\) \(1\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{5}+q^{7}-2q^{9}-q^{15}+2q^{17}+\cdots\)
13552.2.a.s 13552.a 1.a $1$ $108.213$ \(\Q\) None \(0\) \(1\) \(2\) \(-1\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+2q^{5}-q^{7}-2q^{9}+7q^{13}+\cdots\)
13552.2.a.t 13552.a 1.a $1$ $108.213$ \(\Q\) None \(0\) \(1\) \(2\) \(1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+2q^{5}+q^{7}-2q^{9}-7q^{13}+\cdots\)
13552.2.a.u 13552.a 1.a $1$ $108.213$ \(\Q\) None \(0\) \(2\) \(-2\) \(-1\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{3}-2q^{5}-q^{7}+q^{9}-6q^{13}+\cdots\)
13552.2.a.v 13552.a 1.a $1$ $108.213$ \(\Q\) None \(0\) \(2\) \(-2\) \(1\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{3}-2q^{5}+q^{7}+q^{9}+6q^{13}+\cdots\)
13552.2.a.w 13552.a 1.a $1$ $108.213$ \(\Q\) None \(0\) \(2\) \(0\) \(1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{3}+q^{7}+q^{9}+4q^{13}-6q^{17}+\cdots\)
13552.2.a.x 13552.a 1.a $1$ $108.213$ \(\Q\) None \(0\) \(2\) \(2\) \(1\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{3}+2q^{5}+q^{7}+q^{9}-4q^{13}+\cdots\)
13552.2.a.y 13552.a 1.a $1$ $108.213$ \(\Q\) None \(0\) \(2\) \(3\) \(-1\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{3}+3q^{5}-q^{7}+q^{9}-q^{13}+6q^{15}+\cdots\)
13552.2.a.z 13552.a 1.a $1$ $108.213$ \(\Q\) None \(0\) \(2\) \(3\) \(1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{3}+3q^{5}+q^{7}+q^{9}+q^{13}+6q^{15}+\cdots\)
13552.2.a.ba 13552.a 1.a $1$ $108.213$ \(\Q\) None \(0\) \(3\) \(-3\) \(-1\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}-3q^{5}-q^{7}+6q^{9}-4q^{13}+\cdots\)
13552.2.a.bb 13552.a 1.a $1$ $108.213$ \(\Q\) None \(0\) \(3\) \(-3\) \(1\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}-3q^{5}+q^{7}+6q^{9}+4q^{13}+\cdots\)
13552.2.a.bc 13552.a 1.a $1$ $108.213$ \(\Q\) None \(0\) \(3\) \(-1\) \(-1\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+3q^{3}-q^{5}-q^{7}+6q^{9}+4q^{13}+\cdots\)
13552.2.a.bd 13552.a 1.a $2$ $108.213$ \(\Q(\sqrt{5}) \) None \(0\) \(-6\) \(-1\) \(-2\) $+$ $+$ $+$ $\mathrm{SU}(2)$
13552.2.a.be 13552.a 1.a $2$ $108.213$ \(\Q(\sqrt{5}) \) None \(0\) \(-6\) \(-1\) \(2\) $+$ $-$ $-$ $\mathrm{SU}(2)$
13552.2.a.bf 13552.a 1.a $2$ $108.213$ \(\Q(\sqrt{5}) \) None \(0\) \(-2\) \(-4\) \(2\) $-$ $-$ $-$ $\mathrm{SU}(2)$
13552.2.a.bg 13552.a 1.a $2$ $108.213$ \(\Q(\sqrt{3}) \) None \(0\) \(-2\) \(0\) \(-2\) $+$ $+$ $+$ $\mathrm{SU}(2)$
13552.2.a.bh 13552.a 1.a $2$ $108.213$ \(\Q(\sqrt{3}) \) None \(0\) \(-2\) \(0\) \(2\) $+$ $-$ $+$ $\mathrm{SU}(2)$
13552.2.a.bi 13552.a 1.a $2$ $108.213$ \(\Q(\sqrt{3}) \) None \(0\) \(-2\) \(2\) \(-2\) $-$ $+$ $+$ $\mathrm{SU}(2)$
13552.2.a.bj 13552.a 1.a $2$ $108.213$ \(\Q(\sqrt{3}) \) None \(0\) \(-2\) \(2\) \(-2\) $+$ $+$ $+$ $\mathrm{SU}(2)$
13552.2.a.bk 13552.a 1.a $2$ $108.213$ \(\Q(\sqrt{3}) \) None \(0\) \(-2\) \(2\) \(2\) $+$ $-$ $+$ $\mathrm{SU}(2)$
13552.2.a.bl 13552.a 1.a $2$ $108.213$ \(\Q(\sqrt{3}) \) None \(0\) \(-2\) \(2\) \(2\) $-$ $-$ $+$ $\mathrm{SU}(2)$
13552.2.a.bm 13552.a 1.a $2$ $108.213$ \(\Q(\sqrt{5}) \) None \(0\) \(-2\) \(4\) \(-2\) $-$ $+$ $-$ $\mathrm{SU}(2)$
13552.2.a.bn 13552.a 1.a $2$ $108.213$ \(\Q(\sqrt{5}) \) None \(0\) \(-2\) \(4\) \(2\) $-$ $-$ $+$ $\mathrm{SU}(2)$
13552.2.a.bo 13552.a 1.a $2$ $108.213$ \(\Q(\sqrt{5}) \) None \(0\) \(-1\) \(-4\) \(-2\) $-$ $+$ $-$ $\mathrm{SU}(2)$
13552.2.a.bp 13552.a 1.a $2$ $108.213$ \(\Q(\sqrt{5}) \) None \(0\) \(-1\) \(-4\) \(2\) $-$ $-$ $-$ $\mathrm{SU}(2)$
13552.2.a.bq 13552.a 1.a $2$ $108.213$ \(\Q(\sqrt{5}) \) None \(0\) \(0\) \(-3\) \(-2\) $-$ $+$ $-$ $\mathrm{SU}(2)$
13552.2.a.br 13552.a 1.a $2$ $108.213$ \(\Q(\sqrt{5}) \) None \(0\) \(0\) \(-3\) \(2\) $-$ $-$ $+$ $\mathrm{SU}(2)$
13552.2.a.bs 13552.a 1.a $2$ $108.213$ \(\Q(\sqrt{5}) \) None \(0\) \(0\) \(-1\) \(-2\) $-$ $+$ $-$ $\mathrm{SU}(2)$
13552.2.a.bt 13552.a 1.a $2$ $108.213$ \(\Q(\sqrt{5}) \) None \(0\) \(0\) \(-1\) \(2\) $-$ $-$ $+$ $\mathrm{SU}(2)$
13552.2.a.bu 13552.a 1.a $2$ $108.213$ \(\Q(\sqrt{6}) \) None \(0\) \(0\) \(4\) \(-2\) $-$ $+$ $-$ $\mathrm{SU}(2)$
13552.2.a.bv 13552.a 1.a $2$ $108.213$ \(\Q(\sqrt{17}) \) None \(0\) \(1\) \(-3\) \(-2\) $+$ $+$ $-$ $\mathrm{SU}(2)$
13552.2.a.bw 13552.a 1.a $2$ $108.213$ \(\Q(\sqrt{5}) \) None \(0\) \(1\) \(0\) \(-2\) $+$ $+$ $-$ $\mathrm{SU}(2)$
13552.2.a.bx 13552.a 1.a $2$ $108.213$ \(\Q(\sqrt{13}) \) None \(0\) \(1\) \(0\) \(-2\) $-$ $+$ $-$ $\mathrm{SU}(2)$
13552.2.a.by 13552.a 1.a $2$ $108.213$ \(\Q(\sqrt{5}) \) None \(0\) \(1\) \(0\) \(2\) $+$ $-$ $-$ $\mathrm{SU}(2)$
13552.2.a.bz 13552.a 1.a $2$ $108.213$ \(\Q(\sqrt{13}) \) None \(0\) \(1\) \(0\) \(2\) $-$ $-$ $-$ $\mathrm{SU}(2)$
13552.2.a.ca 13552.a 1.a $2$ $108.213$ \(\Q(\sqrt{5}) \) None \(0\) \(1\) \(2\) \(-2\) $-$ $+$ $-$ $\mathrm{SU}(2)$
13552.2.a.cb 13552.a 1.a $2$ $108.213$ \(\Q(\sqrt{5}) \) None \(0\) \(1\) \(2\) \(2\) $-$ $-$ $-$ $\mathrm{SU}(2)$
13552.2.a.cc 13552.a 1.a $2$ $108.213$ \(\Q(\sqrt{5}) \) None \(0\) \(1\) \(4\) \(-2\) $-$ $+$ $-$ $\mathrm{SU}(2)$
13552.2.a.cd 13552.a 1.a $2$ $108.213$ \(\Q(\sqrt{5}) \) None \(0\) \(1\) \(4\) \(2\) $-$ $-$ $+$ $\mathrm{SU}(2)$
13552.2.a.ce 13552.a 1.a $2$ $108.213$ \(\Q(\sqrt{5}) \) None \(0\) \(2\) \(-3\) \(-2\) $-$ $+$ $+$ $\mathrm{SU}(2)$
13552.2.a.cf 13552.a 1.a $2$ $108.213$ \(\Q(\sqrt{5}) \) None \(0\) \(2\) \(-3\) \(2\) $-$ $-$ $-$ $\mathrm{SU}(2)$
13552.2.a.cg 13552.a 1.a $2$ $108.213$ \(\Q(\sqrt{5}) \) None \(0\) \(2\) \(-2\) \(-2\) $+$ $+$ $+$ $\mathrm{SU}(2)$
13552.2.a.ch 13552.a 1.a $2$ $108.213$ \(\Q(\sqrt{5}) \) None \(0\) \(2\) \(-2\) \(2\) $+$ $-$ $-$ $\mathrm{SU}(2)$
13552.2.a.ci 13552.a 1.a $2$ $108.213$ \(\Q(\sqrt{5}) \) None \(0\) \(2\) \(2\) \(2\) $-$ $-$ $-$ $\mathrm{SU}(2)$
13552.2.a.cj 13552.a 1.a $3$ $108.213$ 3.3.2024.1 None \(0\) \(-2\) \(-1\) \(-3\) $-$ $+$ $-$ $\mathrm{SU}(2)$
13552.2.a.ck 13552.a 1.a $3$ $108.213$ 3.3.2024.1 None \(0\) \(-2\) \(-1\) \(3\) $-$ $-$ $-$ $\mathrm{SU}(2)$
13552.2.a.cl 13552.a 1.a $3$ $108.213$ 3.3.229.1 None \(0\) \(-1\) \(1\) \(3\) $+$ $-$ $-$ $\mathrm{SU}(2)$
13552.2.a.cm 13552.a 1.a $3$ $108.213$ 3.3.316.1 None \(0\) \(1\) \(-3\) \(-3\) $+$ $+$ $+$ $\mathrm{SU}(2)$
13552.2.a.cn 13552.a 1.a $3$ $108.213$ 3.3.1509.1 None \(0\) \(1\) \(-3\) \(-3\) $+$ $+$ $-$ $\mathrm{SU}(2)$
13552.2.a.co 13552.a 1.a $3$ $108.213$ 3.3.3021.1 None \(0\) \(1\) \(-3\) \(-3\) $-$ $+$ $-$ $\mathrm{SU}(2)$
13552.2.a.cp 13552.a 1.a $3$ $108.213$ 3.3.316.1 None \(0\) \(1\) \(-3\) \(3\) $+$ $-$ $+$ $\mathrm{SU}(2)$
13552.2.a.cq 13552.a 1.a $3$ $108.213$ 3.3.1509.1 None \(0\) \(1\) \(-3\) \(3\) $+$ $-$ $-$ $\mathrm{SU}(2)$
13552.2.a.cr 13552.a 1.a $3$ $108.213$ 3.3.3021.1 None \(0\) \(1\) \(-3\) \(3\) $-$ $-$ $-$ $\mathrm{SU}(2)$
13552.2.a.cs 13552.a 1.a $3$ $108.213$ 3.3.1016.1 None \(0\) \(1\) \(-1\) \(3\) $-$ $-$ $-$ $\mathrm{SU}(2)$
13552.2.a.ct 13552.a 1.a $3$ $108.213$ 3.3.568.1 None \(0\) \(1\) \(1\) \(-3\) $-$ $+$ $+$ $\mathrm{SU}(2)$
13552.2.a.cu 13552.a 1.a $3$ $108.213$ 3.3.568.1 None \(0\) \(1\) \(1\) \(3\) $-$ $-$ $+$ $\mathrm{SU}(2)$
13552.2.a.cv 13552.a 1.a $4$ $108.213$ 4.4.37525.1 None \(0\) \(-6\) \(2\) \(-4\) $-$ $+$ $-$ $\mathrm{SU}(2)$
13552.2.a.cw 13552.a 1.a $4$ $108.213$ 4.4.37525.1 None \(0\) \(-6\) \(2\) \(4\) $-$ $-$ $+$ $\mathrm{SU}(2)$
13552.2.a.cx 13552.a 1.a $4$ $108.213$ 4.4.13824.1 None \(0\) \(-4\) \(4\) \(-4\) $-$ $+$ $+$ $\mathrm{SU}(2)$
13552.2.a.cy 13552.a 1.a $4$ $108.213$ 4.4.13824.1 None \(0\) \(-4\) \(4\) \(4\) $-$ $-$ $+$ $\mathrm{SU}(2)$
13552.2.a.cz 13552.a 1.a $4$ $108.213$ 4.4.31288.1 None \(0\) \(-1\) \(2\) \(-4\) $+$ $+$ $-$ $\mathrm{SU}(2)$
13552.2.a.da 13552.a 1.a $4$ $108.213$ 4.4.31288.1 None \(0\) \(-1\) \(2\) \(4\) $+$ $-$ $-$ $\mathrm{SU}(2)$
13552.2.a.db 13552.a 1.a $4$ $108.213$ 4.4.11348.1 None \(0\) \(-1\) \(5\) \(-4\) $+$ $+$ $-$ $\mathrm{SU}(2)$
13552.2.a.dc 13552.a 1.a $4$ $108.213$ 4.4.2525.1 None \(0\) \(2\) \(-6\) \(-4\) $-$ $+$ $-$ $\mathrm{SU}(2)$
13552.2.a.dd 13552.a 1.a $4$ $108.213$ 4.4.2525.1 None \(0\) \(2\) \(-6\) \(4\) $-$ $-$ $+$ $\mathrm{SU}(2)$
13552.2.a.de 13552.a 1.a $4$ $108.213$ 4.4.4752.1 None \(0\) \(2\) \(-2\) \(-4\) $-$ $+$ $+$ $\mathrm{SU}(2)$
13552.2.a.df 13552.a 1.a $4$ $108.213$ 4.4.4752.1 None \(0\) \(2\) \(-2\) \(4\) $-$ $-$ $+$ $\mathrm{SU}(2)$
13552.2.a.dg 13552.a 1.a $4$ $108.213$ 4.4.7625.1 None \(0\) \(3\) \(-5\) \(-4\) $-$ $+$ $+$ $\mathrm{SU}(2)$
13552.2.a.dh 13552.a 1.a $4$ $108.213$ 4.4.7625.1 None \(0\) \(3\) \(-5\) \(4\) $-$ $-$ $-$ $\mathrm{SU}(2)$
13552.2.a.di 13552.a 1.a $5$ $108.213$ 5.5.3769928.1 None \(0\) \(-1\) \(-1\) \(-5\) $+$ $+$ $-$ $\mathrm{SU}(2)$
13552.2.a.dj 13552.a 1.a $5$ $108.213$ 5.5.3769928.1 None \(0\) \(-1\) \(-1\) \(5\) $+$ $-$ $-$ $\mathrm{SU}(2)$
13552.2.a.dk 13552.a 1.a $6$ $108.213$ 6.6.7674048.1 None \(0\) \(2\) \(-4\) \(-6\) $-$ $+$ $+$ $\mathrm{SU}(2)$
13552.2.a.dl 13552.a 1.a $6$ $108.213$ 6.6.7674048.1 None \(0\) \(2\) \(-4\) \(6\) $-$ $-$ $+$ $\mathrm{SU}(2)$
13552.2.a.dm 13552.a 1.a $6$ $108.213$ 6.6.3162625.1 None \(0\) \(2\) \(-2\) \(-6\) $-$ $+$ $+$ $\mathrm{SU}(2)$
13552.2.a.dn 13552.a 1.a $6$ $108.213$ 6.6.3162625.1 None \(0\) \(2\) \(-2\) \(6\) $-$ $-$ $-$ $\mathrm{SU}(2)$
13552.2.a.do 13552.a 1.a $6$ $108.213$ 6.6.51592896.1 None \(0\) \(2\) \(0\) \(-6\) $+$ $+$ $+$ $\mathrm{SU}(2)$
13552.2.a.dp 13552.a 1.a $6$ $108.213$ 6.6.51592896.1 None \(0\) \(2\) \(0\) \(6\) $+$ $-$ $+$ $\mathrm{SU}(2)$
13552.2.a.dq 13552.a 1.a $6$ $108.213$ 6.6.988075625.1 None \(0\) \(3\) \(-2\) \(-6\) $+$ $+$ $+$ $\mathrm{SU}(2)$
13552.2.a.dr 13552.a 1.a $6$ $108.213$ 6.6.988075625.1 None \(0\) \(3\) \(-2\) \(6\) $+$ $-$ $-$ $\mathrm{SU}(2)$
13552.2.a.ds 13552.a 1.a $8$ $108.213$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(0\) \(-4\) \(10\) \(-8\) $-$ $+$ $+$ $\mathrm{SU}(2)$
13552.2.a.dt 13552.a 1.a $8$ $108.213$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(0\) \(-4\) \(10\) \(8\) $-$ $-$ $-$ $\mathrm{SU}(2)$
13552.2.a.du 13552.a 1.a $8$ $108.213$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(0\) \(-2\) \(-7\) \(-8\) $+$ $+$ $+$ $\mathrm{SU}(2)$
13552.2.a.dv 13552.a 1.a $8$ $108.213$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(0\) \(-2\) \(-7\) \(8\) $+$ $-$ $-$ $\mathrm{SU}(2)$
13552.2.a.dw 13552.a 1.a $8$ $108.213$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(0\) \(2\) \(7\) \(-8\) $+$ $+$ $-$ $\mathrm{SU}(2)$
13552.2.a.dx 13552.a 1.a $8$ $108.213$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(0\) \(2\) \(7\) \(8\) $+$ $-$ $+$ $\mathrm{SU}(2)$
13552.2.a.dy 13552.a 1.a $10$ $108.213$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None \(0\) \(-2\) \(4\) \(-10\) $+$ $+$ $+$ $\mathrm{SU}(2)$
13552.2.a.dz 13552.a 1.a $10$ $108.213$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None \(0\) \(-2\) \(4\) \(10\) $+$ $-$ $+$ $\mathrm{SU}(2)$
13552.2.a.ea 13552.a 1.a $10$ $108.213$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None \(0\) \(3\) \(5\) \(-10\) $+$ $+$ $-$ $\mathrm{SU}(2)$
13552.2.a.eb 13552.a 1.a $10$ $108.213$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None \(0\) \(3\) \(5\) \(10\) $+$ $-$ $+$ $\mathrm{SU}(2)$

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(13552))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(13552)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 20}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(77))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(88))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(112))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(121))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(154))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(176))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(242))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(308))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(484))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(616))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(847))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(968))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1232))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1694))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1936))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3388))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(6776))\)\(^{\oplus 2}\)