Defining parameters
| Level: | \( N \) | \(=\) | \( 13552 = 2^{4} \cdot 7 \cdot 11^{2} \) | 
| Weight: | \( k \) | \(=\) | \( 2 \) | 
| Character orbit: | \([\chi]\) | \(=\) | 13552.a (trivial) | 
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 106 \) | ||
| Sturm bound: | \(4224\) | 
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(13552))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 2184 | 327 | 1857 | 
| Cusp forms | 2041 | 327 | 1714 | 
| Eisenstein series | 143 | 0 | 143 | 
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(7\) | \(11\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(264\) | \(42\) | \(222\) | \(247\) | \(42\) | \(205\) | \(17\) | \(0\) | \(17\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(279\) | \(40\) | \(239\) | \(261\) | \(40\) | \(221\) | \(18\) | \(0\) | \(18\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(282\) | \(42\) | \(240\) | \(264\) | \(42\) | \(222\) | \(18\) | \(0\) | \(18\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(267\) | \(40\) | \(227\) | \(249\) | \(40\) | \(209\) | \(18\) | \(0\) | \(18\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(270\) | \(41\) | \(229\) | \(252\) | \(41\) | \(211\) | \(18\) | \(0\) | \(18\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(275\) | \(40\) | \(235\) | \(257\) | \(40\) | \(217\) | \(18\) | \(0\) | \(18\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(276\) | \(37\) | \(239\) | \(258\) | \(37\) | \(221\) | \(18\) | \(0\) | \(18\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(271\) | \(45\) | \(226\) | \(253\) | \(45\) | \(208\) | \(18\) | \(0\) | \(18\) | |||
| Plus space | \(+\) | \(1082\) | \(159\) | \(923\) | \(1011\) | \(159\) | \(852\) | \(71\) | \(0\) | \(71\) | |||||
| Minus space | \(-\) | \(1102\) | \(168\) | \(934\) | \(1030\) | \(168\) | \(862\) | \(72\) | \(0\) | \(72\) | |||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(13552))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 7 | 11 | |||||||
| 13552.2.a.a | $1$ | $108.213$ | \(\Q\) | None | \(0\) | \(-3\) | \(2\) | \(-1\) | $-$ | $+$ | $-$ | \(q-3q^{3}+2q^{5}-q^{7}+6q^{9}-5q^{13}+\cdots\) | |
| 13552.2.a.b | $1$ | $108.213$ | \(\Q\) | None | \(0\) | \(-3\) | \(2\) | \(1\) | $-$ | $-$ | $-$ | \(q-3q^{3}+2q^{5}+q^{7}+6q^{9}+5q^{13}+\cdots\) | |
| 13552.2.a.c | $1$ | $108.213$ | \(\Q\) | None | \(0\) | \(-2\) | \(-4\) | \(1\) | $+$ | $-$ | $-$ | \(q-2q^{3}-4q^{5}+q^{7}+q^{9}+8q^{15}+\cdots\) | |
| 13552.2.a.d | $1$ | $108.213$ | \(\Q\) | None | \(0\) | \(-2\) | \(-2\) | \(-1\) | $-$ | $+$ | $-$ | \(q-2q^{3}-2q^{5}-q^{7}+q^{9}-4q^{13}+\cdots\) | |
| 13552.2.a.e | $1$ | $108.213$ | \(\Q\) | None | \(0\) | \(-2\) | \(2\) | \(-1\) | $-$ | $+$ | $-$ | \(q-2q^{3}+2q^{5}-q^{7}+q^{9}+4q^{13}+\cdots\) | |
| 13552.2.a.f | $1$ | $108.213$ | \(\Q\) | None | \(0\) | \(-2\) | \(2\) | \(1\) | $+$ | $-$ | $-$ | \(q-2q^{3}+2q^{5}+q^{7}+q^{9}-4q^{15}+\cdots\) | |
| 13552.2.a.g | $1$ | $108.213$ | \(\Q\) | None | \(0\) | \(-1\) | \(1\) | \(-1\) | $-$ | $+$ | $+$ | \(q-q^{3}+q^{5}-q^{7}-2q^{9}-q^{15}+8q^{19}+\cdots\) | |
| 13552.2.a.h | $1$ | $108.213$ | \(\Q\) | None | \(0\) | \(-1\) | \(1\) | \(1\) | $-$ | $-$ | $+$ | \(q-q^{3}+q^{5}+q^{7}-2q^{9}-q^{15}-8q^{19}+\cdots\) | |
| 13552.2.a.i | $1$ | $108.213$ | \(\Q\) | None | \(0\) | \(-1\) | \(3\) | \(1\) | $-$ | $-$ | $-$ | \(q-q^{3}+3q^{5}+q^{7}-2q^{9}+4q^{13}+\cdots\) | |
| 13552.2.a.j | $1$ | $108.213$ | \(\Q\) | None | \(0\) | \(0\) | \(-4\) | \(-1\) | $-$ | $+$ | $-$ | \(q-4q^{5}-q^{7}-3q^{9}-2q^{13}+4q^{17}+\cdots\) | |
| 13552.2.a.k | $1$ | $108.213$ | \(\Q\) | None | \(0\) | \(0\) | \(-2\) | \(1\) | $+$ | $-$ | $-$ | \(q-2q^{5}+q^{7}-3q^{9}-2q^{13}+2q^{17}+\cdots\) | |
| 13552.2.a.l | $1$ | $108.213$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(-1\) | $-$ | $+$ | $-$ | \(q-q^{5}-q^{7}-3q^{9}+q^{13}+q^{17}-4q^{23}+\cdots\) | |
| 13552.2.a.m | $1$ | $108.213$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(1\) | $-$ | $-$ | $-$ | \(q-q^{5}+q^{7}-3q^{9}-q^{13}-q^{17}-4q^{23}+\cdots\) | |
| 13552.2.a.n | $1$ | $108.213$ | \(\Q\) | None | \(0\) | \(0\) | \(0\) | \(-1\) | $+$ | $+$ | $-$ | \(q-q^{7}-3q^{9}+6q^{13}-2q^{19}-4q^{23}+\cdots\) | |
| 13552.2.a.o | $1$ | $108.213$ | \(\Q\) | None | \(0\) | \(0\) | \(2\) | \(-1\) | $-$ | $+$ | $-$ | \(q+2q^{5}-q^{7}-3q^{9}-2q^{13}-2q^{17}+\cdots\) | |
| 13552.2.a.p | $1$ | $108.213$ | \(\Q\) | None | \(0\) | \(0\) | \(2\) | \(-1\) | $+$ | $+$ | $-$ | \(q+2q^{5}-q^{7}-3q^{9}-2q^{13}+6q^{17}+\cdots\) | |
| 13552.2.a.q | $1$ | $108.213$ | \(\Q\) | None | \(0\) | \(1\) | \(-1\) | \(-1\) | $-$ | $+$ | $-$ | \(q+q^{3}-q^{5}-q^{7}-2q^{9}+4q^{13}-q^{15}+\cdots\) | |
| 13552.2.a.r | $1$ | $108.213$ | \(\Q\) | None | \(0\) | \(1\) | \(-1\) | \(1\) | $+$ | $-$ | $-$ | \(q+q^{3}-q^{5}+q^{7}-2q^{9}-q^{15}+2q^{17}+\cdots\) | |
| 13552.2.a.s | $1$ | $108.213$ | \(\Q\) | None | \(0\) | \(1\) | \(2\) | \(-1\) | $-$ | $+$ | $-$ | \(q+q^{3}+2q^{5}-q^{7}-2q^{9}+7q^{13}+\cdots\) | |
| 13552.2.a.t | $1$ | $108.213$ | \(\Q\) | None | \(0\) | \(1\) | \(2\) | \(1\) | $-$ | $-$ | $-$ | \(q+q^{3}+2q^{5}+q^{7}-2q^{9}-7q^{13}+\cdots\) | |
| 13552.2.a.u | $1$ | $108.213$ | \(\Q\) | None | \(0\) | \(2\) | \(-2\) | \(-1\) | $-$ | $+$ | $+$ | \(q+2q^{3}-2q^{5}-q^{7}+q^{9}-6q^{13}+\cdots\) | |
| 13552.2.a.v | $1$ | $108.213$ | \(\Q\) | None | \(0\) | \(2\) | \(-2\) | \(1\) | $-$ | $-$ | $+$ | \(q+2q^{3}-2q^{5}+q^{7}+q^{9}+6q^{13}+\cdots\) | |
| 13552.2.a.w | $1$ | $108.213$ | \(\Q\) | None | \(0\) | \(2\) | \(0\) | \(1\) | $-$ | $-$ | $-$ | \(q+2q^{3}+q^{7}+q^{9}+4q^{13}-6q^{17}+\cdots\) | |
| 13552.2.a.x | $1$ | $108.213$ | \(\Q\) | None | \(0\) | \(2\) | \(2\) | \(1\) | $+$ | $-$ | $-$ | \(q+2q^{3}+2q^{5}+q^{7}+q^{9}-4q^{13}+\cdots\) | |
| 13552.2.a.y | $1$ | $108.213$ | \(\Q\) | None | \(0\) | \(2\) | \(3\) | \(-1\) | $-$ | $+$ | $-$ | \(q+2q^{3}+3q^{5}-q^{7}+q^{9}-q^{13}+6q^{15}+\cdots\) | |
| 13552.2.a.z | $1$ | $108.213$ | \(\Q\) | None | \(0\) | \(2\) | \(3\) | \(1\) | $-$ | $-$ | $-$ | \(q+2q^{3}+3q^{5}+q^{7}+q^{9}+q^{13}+6q^{15}+\cdots\) | |
| 13552.2.a.ba | $1$ | $108.213$ | \(\Q\) | None | \(0\) | \(3\) | \(-3\) | \(-1\) | $+$ | $+$ | $+$ | \(q+3q^{3}-3q^{5}-q^{7}+6q^{9}-4q^{13}+\cdots\) | |
| 13552.2.a.bb | $1$ | $108.213$ | \(\Q\) | None | \(0\) | \(3\) | \(-3\) | \(1\) | $+$ | $-$ | $+$ | \(q+3q^{3}-3q^{5}+q^{7}+6q^{9}+4q^{13}+\cdots\) | |
| 13552.2.a.bc | $1$ | $108.213$ | \(\Q\) | None | \(0\) | \(3\) | \(-1\) | \(-1\) | $-$ | $+$ | $-$ | \(q+3q^{3}-q^{5}-q^{7}+6q^{9}+4q^{13}+\cdots\) | |
| 13552.2.a.bd | $2$ | $108.213$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(-6\) | \(-1\) | \(-2\) | $+$ | $+$ | $+$ | ||
| 13552.2.a.be | $2$ | $108.213$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(-6\) | \(-1\) | \(2\) | $+$ | $-$ | $-$ | ||
| 13552.2.a.bf | $2$ | $108.213$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(-2\) | \(-4\) | \(2\) | $-$ | $-$ | $-$ | ||
| 13552.2.a.bg | $2$ | $108.213$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(-2\) | \(0\) | \(-2\) | $+$ | $+$ | $+$ | ||
| 13552.2.a.bh | $2$ | $108.213$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(-2\) | \(0\) | \(2\) | $+$ | $-$ | $+$ | ||
| 13552.2.a.bi | $2$ | $108.213$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(-2\) | \(2\) | \(-2\) | $-$ | $+$ | $+$ | ||
| 13552.2.a.bj | $2$ | $108.213$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(-2\) | \(2\) | \(-2\) | $+$ | $+$ | $+$ | ||
| 13552.2.a.bk | $2$ | $108.213$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(-2\) | \(2\) | \(2\) | $+$ | $-$ | $+$ | ||
| 13552.2.a.bl | $2$ | $108.213$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(-2\) | \(2\) | \(2\) | $-$ | $-$ | $+$ | ||
| 13552.2.a.bm | $2$ | $108.213$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(-2\) | \(4\) | \(-2\) | $-$ | $+$ | $-$ | ||
| 13552.2.a.bn | $2$ | $108.213$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(-2\) | \(4\) | \(2\) | $-$ | $-$ | $+$ | ||
| 13552.2.a.bo | $2$ | $108.213$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(-1\) | \(-4\) | \(-2\) | $-$ | $+$ | $-$ | ||
| 13552.2.a.bp | $2$ | $108.213$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(-1\) | \(-4\) | \(2\) | $-$ | $-$ | $-$ | ||
| 13552.2.a.bq | $2$ | $108.213$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(0\) | \(-3\) | \(-2\) | $-$ | $+$ | $-$ | ||
| 13552.2.a.br | $2$ | $108.213$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(0\) | \(-3\) | \(2\) | $-$ | $-$ | $+$ | ||
| 13552.2.a.bs | $2$ | $108.213$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(0\) | \(-1\) | \(-2\) | $-$ | $+$ | $-$ | ||
| 13552.2.a.bt | $2$ | $108.213$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(0\) | \(-1\) | \(2\) | $-$ | $-$ | $+$ | ||
| 13552.2.a.bu | $2$ | $108.213$ | \(\Q(\sqrt{6}) \) | None | \(0\) | \(0\) | \(4\) | \(-2\) | $-$ | $+$ | $-$ | ||
| 13552.2.a.bv | $2$ | $108.213$ | \(\Q(\sqrt{17}) \) | None | \(0\) | \(1\) | \(-3\) | \(-2\) | $+$ | $+$ | $-$ | ||
| 13552.2.a.bw | $2$ | $108.213$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(1\) | \(0\) | \(-2\) | $+$ | $+$ | $-$ | ||
| 13552.2.a.bx | $2$ | $108.213$ | \(\Q(\sqrt{13}) \) | None | \(0\) | \(1\) | \(0\) | \(-2\) | $-$ | $+$ | $-$ | ||
| 13552.2.a.by | $2$ | $108.213$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(1\) | \(0\) | \(2\) | $+$ | $-$ | $-$ | ||
| 13552.2.a.bz | $2$ | $108.213$ | \(\Q(\sqrt{13}) \) | None | \(0\) | \(1\) | \(0\) | \(2\) | $-$ | $-$ | $-$ | ||
| 13552.2.a.ca | $2$ | $108.213$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(1\) | \(2\) | \(-2\) | $-$ | $+$ | $-$ | ||
| 13552.2.a.cb | $2$ | $108.213$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(1\) | \(2\) | \(2\) | $-$ | $-$ | $-$ | ||
| 13552.2.a.cc | $2$ | $108.213$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(1\) | \(4\) | \(-2\) | $-$ | $+$ | $-$ | ||
| 13552.2.a.cd | $2$ | $108.213$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(1\) | \(4\) | \(2\) | $-$ | $-$ | $+$ | ||
| 13552.2.a.ce | $2$ | $108.213$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(2\) | \(-3\) | \(-2\) | $-$ | $+$ | $+$ | ||
| 13552.2.a.cf | $2$ | $108.213$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(2\) | \(-3\) | \(2\) | $-$ | $-$ | $-$ | ||
| 13552.2.a.cg | $2$ | $108.213$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(2\) | \(-2\) | \(-2\) | $+$ | $+$ | $+$ | ||
| 13552.2.a.ch | $2$ | $108.213$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(2\) | \(-2\) | \(2\) | $+$ | $-$ | $-$ | ||
| 13552.2.a.ci | $2$ | $108.213$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(2\) | \(2\) | \(2\) | $-$ | $-$ | $-$ | ||
| 13552.2.a.cj | $3$ | $108.213$ | 3.3.2024.1 | None | \(0\) | \(-2\) | \(-1\) | \(-3\) | $-$ | $+$ | $-$ | ||
| 13552.2.a.ck | $3$ | $108.213$ | 3.3.2024.1 | None | \(0\) | \(-2\) | \(-1\) | \(3\) | $-$ | $-$ | $-$ | ||
| 13552.2.a.cl | $3$ | $108.213$ | 3.3.229.1 | None | \(0\) | \(-1\) | \(1\) | \(3\) | $+$ | $-$ | $-$ | ||
| 13552.2.a.cm | $3$ | $108.213$ | 3.3.316.1 | None | \(0\) | \(1\) | \(-3\) | \(-3\) | $+$ | $+$ | $+$ | ||
| 13552.2.a.cn | $3$ | $108.213$ | 3.3.1509.1 | None | \(0\) | \(1\) | \(-3\) | \(-3\) | $+$ | $+$ | $-$ | ||
| 13552.2.a.co | $3$ | $108.213$ | 3.3.3021.1 | None | \(0\) | \(1\) | \(-3\) | \(-3\) | $-$ | $+$ | $-$ | ||
| 13552.2.a.cp | $3$ | $108.213$ | 3.3.316.1 | None | \(0\) | \(1\) | \(-3\) | \(3\) | $+$ | $-$ | $+$ | ||
| 13552.2.a.cq | $3$ | $108.213$ | 3.3.1509.1 | None | \(0\) | \(1\) | \(-3\) | \(3\) | $+$ | $-$ | $-$ | ||
| 13552.2.a.cr | $3$ | $108.213$ | 3.3.3021.1 | None | \(0\) | \(1\) | \(-3\) | \(3\) | $-$ | $-$ | $-$ | ||
| 13552.2.a.cs | $3$ | $108.213$ | 3.3.1016.1 | None | \(0\) | \(1\) | \(-1\) | \(3\) | $-$ | $-$ | $-$ | ||
| 13552.2.a.ct | $3$ | $108.213$ | 3.3.568.1 | None | \(0\) | \(1\) | \(1\) | \(-3\) | $-$ | $+$ | $+$ | ||
| 13552.2.a.cu | $3$ | $108.213$ | 3.3.568.1 | None | \(0\) | \(1\) | \(1\) | \(3\) | $-$ | $-$ | $+$ | ||
| 13552.2.a.cv | $4$ | $108.213$ | 4.4.37525.1 | None | \(0\) | \(-6\) | \(2\) | \(-4\) | $-$ | $+$ | $-$ | ||
| 13552.2.a.cw | $4$ | $108.213$ | 4.4.37525.1 | None | \(0\) | \(-6\) | \(2\) | \(4\) | $-$ | $-$ | $+$ | ||
| 13552.2.a.cx | $4$ | $108.213$ | 4.4.13824.1 | None | \(0\) | \(-4\) | \(4\) | \(-4\) | $-$ | $+$ | $+$ | ||
| 13552.2.a.cy | $4$ | $108.213$ | 4.4.13824.1 | None | \(0\) | \(-4\) | \(4\) | \(4\) | $-$ | $-$ | $+$ | ||
| 13552.2.a.cz | $4$ | $108.213$ | 4.4.31288.1 | None | \(0\) | \(-1\) | \(2\) | \(-4\) | $+$ | $+$ | $-$ | ||
| 13552.2.a.da | $4$ | $108.213$ | 4.4.31288.1 | None | \(0\) | \(-1\) | \(2\) | \(4\) | $+$ | $-$ | $-$ | ||
| 13552.2.a.db | $4$ | $108.213$ | 4.4.11348.1 | None | \(0\) | \(-1\) | \(5\) | \(-4\) | $+$ | $+$ | $-$ | ||
| 13552.2.a.dc | $4$ | $108.213$ | 4.4.2525.1 | None | \(0\) | \(2\) | \(-6\) | \(-4\) | $-$ | $+$ | $-$ | ||
| 13552.2.a.dd | $4$ | $108.213$ | 4.4.2525.1 | None | \(0\) | \(2\) | \(-6\) | \(4\) | $-$ | $-$ | $+$ | ||
| 13552.2.a.de | $4$ | $108.213$ | 4.4.4752.1 | None | \(0\) | \(2\) | \(-2\) | \(-4\) | $-$ | $+$ | $+$ | ||
| 13552.2.a.df | $4$ | $108.213$ | 4.4.4752.1 | None | \(0\) | \(2\) | \(-2\) | \(4\) | $-$ | $-$ | $+$ | ||
| 13552.2.a.dg | $4$ | $108.213$ | 4.4.7625.1 | None | \(0\) | \(3\) | \(-5\) | \(-4\) | $-$ | $+$ | $+$ | ||
| 13552.2.a.dh | $4$ | $108.213$ | 4.4.7625.1 | None | \(0\) | \(3\) | \(-5\) | \(4\) | $-$ | $-$ | $-$ | ||
| 13552.2.a.di | $5$ | $108.213$ | 5.5.3769928.1 | None | \(0\) | \(-1\) | \(-1\) | \(-5\) | $+$ | $+$ | $-$ | ||
| 13552.2.a.dj | $5$ | $108.213$ | 5.5.3769928.1 | None | \(0\) | \(-1\) | \(-1\) | \(5\) | $+$ | $-$ | $-$ | ||
| 13552.2.a.dk | $6$ | $108.213$ | 6.6.7674048.1 | None | \(0\) | \(2\) | \(-4\) | \(-6\) | $-$ | $+$ | $+$ | ||
| 13552.2.a.dl | $6$ | $108.213$ | 6.6.7674048.1 | None | \(0\) | \(2\) | \(-4\) | \(6\) | $-$ | $-$ | $+$ | ||
| 13552.2.a.dm | $6$ | $108.213$ | 6.6.3162625.1 | None | \(0\) | \(2\) | \(-2\) | \(-6\) | $-$ | $+$ | $+$ | ||
| 13552.2.a.dn | $6$ | $108.213$ | 6.6.3162625.1 | None | \(0\) | \(2\) | \(-2\) | \(6\) | $-$ | $-$ | $-$ | ||
| 13552.2.a.do | $6$ | $108.213$ | 6.6.51592896.1 | None | \(0\) | \(2\) | \(0\) | \(-6\) | $+$ | $+$ | $+$ | ||
| 13552.2.a.dp | $6$ | $108.213$ | 6.6.51592896.1 | None | \(0\) | \(2\) | \(0\) | \(6\) | $+$ | $-$ | $+$ | ||
| 13552.2.a.dq | $6$ | $108.213$ | 6.6.988075625.1 | None | \(0\) | \(3\) | \(-2\) | \(-6\) | $+$ | $+$ | $+$ | ||
| 13552.2.a.dr | $6$ | $108.213$ | 6.6.988075625.1 | None | \(0\) | \(3\) | \(-2\) | \(6\) | $+$ | $-$ | $-$ | ||
| 13552.2.a.ds | $8$ | $108.213$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(-4\) | \(10\) | \(-8\) | $-$ | $+$ | $+$ | ||
| 13552.2.a.dt | $8$ | $108.213$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(-4\) | \(10\) | \(8\) | $-$ | $-$ | $-$ | ||
| 13552.2.a.du | $8$ | $108.213$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(-2\) | \(-7\) | \(-8\) | $+$ | $+$ | $+$ | ||
| 13552.2.a.dv | $8$ | $108.213$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(-2\) | \(-7\) | \(8\) | $+$ | $-$ | $-$ | ||
| 13552.2.a.dw | $8$ | $108.213$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(2\) | \(7\) | \(-8\) | $+$ | $+$ | $-$ | ||
| 13552.2.a.dx | $8$ | $108.213$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(2\) | \(7\) | \(8\) | $+$ | $-$ | $+$ | ||
| 13552.2.a.dy | $10$ | $108.213$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(-2\) | \(4\) | \(-10\) | $+$ | $+$ | $+$ | ||
| 13552.2.a.dz | $10$ | $108.213$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(-2\) | \(4\) | \(10\) | $+$ | $-$ | $+$ | ||
| 13552.2.a.ea | $10$ | $108.213$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(3\) | \(5\) | \(-10\) | $+$ | $+$ | $-$ | ||
| 13552.2.a.eb | $10$ | $108.213$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(3\) | \(5\) | \(10\) | $+$ | $-$ | $+$ | ||
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(13552))\) into lower level spaces
  \( S_{2}^{\mathrm{old}}(\Gamma_0(13552)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 20}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(77))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(88))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(112))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(121))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(154))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(176))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(242))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(308))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(484))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(616))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(847))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(968))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1232))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1694))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1936))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3388))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(6776))\)\(^{\oplus 2}\)
            