Properties

Label 13520.2.a
Level $13520$
Weight $2$
Character orbit 13520.a
Rep. character $\chi_{13520}(1,\cdot)$
Character field $\Q$
Dimension $310$
Newform subspaces $99$
Sturm bound $4368$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 13520 = 2^{4} \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 13520.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 99 \)
Sturm bound: \(4368\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(13520))\).

Total New Old
Modular forms 2268 310 1958
Cusp forms 2101 310 1791
Eisenstein series 167 0 167

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)\(13\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(273\)\(35\)\(238\)\(253\)\(35\)\(218\)\(20\)\(0\)\(20\)
\(+\)\(+\)\(-\)\(-\)\(293\)\(42\)\(251\)\(272\)\(42\)\(230\)\(21\)\(0\)\(21\)
\(+\)\(-\)\(+\)\(-\)\(287\)\(42\)\(245\)\(266\)\(42\)\(224\)\(21\)\(0\)\(21\)
\(+\)\(-\)\(-\)\(+\)\(279\)\(36\)\(243\)\(258\)\(36\)\(222\)\(21\)\(0\)\(21\)
\(-\)\(+\)\(+\)\(-\)\(294\)\(42\)\(252\)\(273\)\(42\)\(231\)\(21\)\(0\)\(21\)
\(-\)\(+\)\(-\)\(+\)\(274\)\(36\)\(238\)\(253\)\(36\)\(217\)\(21\)\(0\)\(21\)
\(-\)\(-\)\(+\)\(+\)\(280\)\(35\)\(245\)\(259\)\(35\)\(224\)\(21\)\(0\)\(21\)
\(-\)\(-\)\(-\)\(-\)\(288\)\(42\)\(246\)\(267\)\(42\)\(225\)\(21\)\(0\)\(21\)
Plus space\(+\)\(1106\)\(142\)\(964\)\(1023\)\(142\)\(881\)\(83\)\(0\)\(83\)
Minus space\(-\)\(1162\)\(168\)\(994\)\(1078\)\(168\)\(910\)\(84\)\(0\)\(84\)

Trace form

\( 310 q - 2 q^{3} - 6 q^{7} + 306 q^{9} - 4 q^{11} - 2 q^{15} - 4 q^{17} - 8 q^{19} - 4 q^{21} + 2 q^{23} + 310 q^{25} + 4 q^{27} + 4 q^{29} - 20 q^{31} - 6 q^{35} + 8 q^{37} + 8 q^{41} - 26 q^{43} - 4 q^{45}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(13520))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5 13
13520.2.a.a 13520.a 1.a $1$ $107.958$ \(\Q\) None \(0\) \(-2\) \(-1\) \(-3\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{3}-q^{5}-3q^{7}+q^{9}+5q^{11}+\cdots\)
13520.2.a.b 13520.a 1.a $1$ $107.958$ \(\Q\) None \(0\) \(-2\) \(-1\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{3}-q^{5}+q^{9}+2q^{15}+6q^{17}+\cdots\)
13520.2.a.c 13520.a 1.a $1$ $107.958$ \(\Q\) None \(0\) \(-2\) \(-1\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{3}-q^{5}+q^{9}+2q^{11}+2q^{15}+\cdots\)
13520.2.a.d 13520.a 1.a $1$ $107.958$ \(\Q\) None \(0\) \(-2\) \(1\) \(-4\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{3}+q^{5}-4q^{7}+q^{9}-2q^{11}+\cdots\)
13520.2.a.e 13520.a 1.a $1$ $107.958$ \(\Q\) None \(0\) \(-2\) \(1\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{3}+q^{5}+q^{9}-2q^{15}+6q^{17}+\cdots\)
13520.2.a.f 13520.a 1.a $1$ $107.958$ \(\Q\) None \(0\) \(-2\) \(1\) \(2\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{3}+q^{5}+2q^{7}+q^{9}+4q^{11}+\cdots\)
13520.2.a.g 13520.a 1.a $1$ $107.958$ \(\Q\) None \(0\) \(-2\) \(1\) \(3\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{3}+q^{5}+3q^{7}+q^{9}-5q^{11}+\cdots\)
13520.2.a.h 13520.a 1.a $1$ $107.958$ \(\Q\) None \(0\) \(-1\) \(-1\) \(-1\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{5}-q^{7}-2q^{9}+3q^{11}+q^{15}+\cdots\)
13520.2.a.i 13520.a 1.a $1$ $107.958$ \(\Q\) None \(0\) \(-1\) \(-1\) \(1\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{5}+q^{7}-2q^{9}-3q^{11}+q^{15}+\cdots\)
13520.2.a.j 13520.a 1.a $1$ $107.958$ \(\Q\) None \(0\) \(-1\) \(1\) \(-1\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{5}-q^{7}-2q^{9}+3q^{11}-q^{15}+\cdots\)
13520.2.a.k 13520.a 1.a $1$ $107.958$ \(\Q\) None \(0\) \(-1\) \(1\) \(1\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{5}+q^{7}-2q^{9}-3q^{11}-q^{15}+\cdots\)
13520.2.a.l 13520.a 1.a $1$ $107.958$ \(\Q\) None \(0\) \(0\) \(-1\) \(-4\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{5}-4q^{7}-3q^{9}+4q^{11}+2q^{17}+\cdots\)
13520.2.a.m 13520.a 1.a $1$ $107.958$ \(\Q\) None \(0\) \(0\) \(-1\) \(-3\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{5}-3q^{7}-3q^{9}-3q^{11}-4q^{17}+\cdots\)
13520.2.a.n 13520.a 1.a $1$ $107.958$ \(\Q\) None \(0\) \(0\) \(-1\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{5}-3q^{9}+2q^{17}-8q^{19}+4q^{23}+\cdots\)
13520.2.a.o 13520.a 1.a $1$ $107.958$ \(\Q\) None \(0\) \(0\) \(1\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{5}-3q^{9}-4q^{11}-6q^{17}+4q^{19}+\cdots\)
13520.2.a.p 13520.a 1.a $1$ $107.958$ \(\Q\) None \(0\) \(0\) \(1\) \(3\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{5}+3q^{7}-3q^{9}+3q^{11}-4q^{17}+\cdots\)
13520.2.a.q 13520.a 1.a $1$ $107.958$ \(\Q\) None \(0\) \(1\) \(-1\) \(-5\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{5}-5q^{7}-2q^{9}+5q^{11}+\cdots\)
13520.2.a.r 13520.a 1.a $1$ $107.958$ \(\Q\) None \(0\) \(1\) \(-1\) \(-3\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{5}-3q^{7}-2q^{9}+5q^{11}+\cdots\)
13520.2.a.s 13520.a 1.a $1$ $107.958$ \(\Q\) None \(0\) \(1\) \(-1\) \(3\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{5}+3q^{7}-2q^{9}-q^{11}-q^{15}+\cdots\)
13520.2.a.t 13520.a 1.a $1$ $107.958$ \(\Q\) None \(0\) \(1\) \(-1\) \(3\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{5}+3q^{7}-2q^{9}+3q^{11}+\cdots\)
13520.2.a.u 13520.a 1.a $1$ $107.958$ \(\Q\) None \(0\) \(1\) \(1\) \(-3\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{5}-3q^{7}-2q^{9}-3q^{11}+\cdots\)
13520.2.a.v 13520.a 1.a $1$ $107.958$ \(\Q\) None \(0\) \(1\) \(1\) \(-3\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{5}-3q^{7}-2q^{9}+q^{11}+q^{15}+\cdots\)
13520.2.a.w 13520.a 1.a $1$ $107.958$ \(\Q\) None \(0\) \(1\) \(1\) \(3\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{5}+3q^{7}-2q^{9}-5q^{11}+\cdots\)
13520.2.a.x 13520.a 1.a $1$ $107.958$ \(\Q\) None \(0\) \(1\) \(1\) \(5\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{5}+5q^{7}-2q^{9}-5q^{11}+\cdots\)
13520.2.a.y 13520.a 1.a $1$ $107.958$ \(\Q\) None \(0\) \(2\) \(-1\) \(-4\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{3}-q^{5}-4q^{7}+q^{9}-6q^{11}+\cdots\)
13520.2.a.z 13520.a 1.a $1$ $107.958$ \(\Q\) None \(0\) \(2\) \(-1\) \(1\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{3}-q^{5}+q^{7}+q^{9}-3q^{11}-2q^{15}+\cdots\)
13520.2.a.ba 13520.a 1.a $1$ $107.958$ \(\Q\) None \(0\) \(2\) \(1\) \(-4\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{3}+q^{5}-4q^{7}+q^{9}+2q^{11}+\cdots\)
13520.2.a.bb 13520.a 1.a $1$ $107.958$ \(\Q\) None \(0\) \(2\) \(1\) \(-1\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{3}+q^{5}-q^{7}+q^{9}+3q^{11}+2q^{15}+\cdots\)
13520.2.a.bc 13520.a 1.a $1$ $107.958$ \(\Q\) None \(0\) \(2\) \(1\) \(2\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{3}+q^{5}+2q^{7}+q^{9}+2q^{15}+\cdots\)
13520.2.a.bd 13520.a 1.a $1$ $107.958$ \(\Q\) None \(0\) \(3\) \(-1\) \(-3\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}-q^{5}-3q^{7}+6q^{9}-5q^{11}+\cdots\)
13520.2.a.be 13520.a 1.a $1$ $107.958$ \(\Q\) None \(0\) \(3\) \(-1\) \(3\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}-q^{5}+3q^{7}+6q^{9}+3q^{11}+\cdots\)
13520.2.a.bf 13520.a 1.a $1$ $107.958$ \(\Q\) None \(0\) \(3\) \(1\) \(-3\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}+q^{5}-3q^{7}+6q^{9}-3q^{11}+\cdots\)
13520.2.a.bg 13520.a 1.a $1$ $107.958$ \(\Q\) None \(0\) \(3\) \(1\) \(3\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}+q^{5}+3q^{7}+6q^{9}+5q^{11}+\cdots\)
13520.2.a.bh 13520.a 1.a $2$ $107.958$ \(\Q(\sqrt{3}) \) None \(0\) \(-2\) \(-2\) \(-2\) $-$ $+$ $+$ $\mathrm{SU}(2)$
13520.2.a.bi 13520.a 1.a $2$ $107.958$ \(\Q(\sqrt{13}) \) None \(0\) \(-2\) \(-2\) \(2\) $-$ $+$ $+$ $\mathrm{SU}(2)$
13520.2.a.bj 13520.a 1.a $2$ $107.958$ \(\Q(\sqrt{13}) \) None \(0\) \(-2\) \(2\) \(-2\) $-$ $-$ $+$ $\mathrm{SU}(2)$
13520.2.a.bk 13520.a 1.a $2$ $107.958$ \(\Q(\sqrt{5}) \) None \(0\) \(-2\) \(2\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$
13520.2.a.bl 13520.a 1.a $2$ $107.958$ \(\Q(\sqrt{3}) \) None \(0\) \(-2\) \(2\) \(2\) $-$ $-$ $+$ $\mathrm{SU}(2)$
13520.2.a.bm 13520.a 1.a $2$ $107.958$ \(\Q(\sqrt{3}) \) None \(0\) \(-2\) \(2\) \(4\) $-$ $-$ $+$ $\mathrm{SU}(2)$
13520.2.a.bn 13520.a 1.a $2$ $107.958$ \(\Q(\sqrt{10}) \) None \(0\) \(0\) \(-2\) \(2\) $-$ $+$ $+$ $\mathrm{SU}(2)$
13520.2.a.bo 13520.a 1.a $2$ $107.958$ \(\Q(\sqrt{2}) \) None \(0\) \(0\) \(-2\) \(4\) $-$ $+$ $+$ $\mathrm{SU}(2)$
13520.2.a.bp 13520.a 1.a $2$ $107.958$ \(\Q(\sqrt{5}) \) None \(0\) \(0\) \(-2\) \(4\) $-$ $+$ $+$ $\mathrm{SU}(2)$
13520.2.a.bq 13520.a 1.a $2$ $107.958$ \(\Q(\sqrt{6}) \) None \(0\) \(0\) \(-2\) \(4\) $+$ $+$ $+$ $\mathrm{SU}(2)$
13520.2.a.br 13520.a 1.a $2$ $107.958$ \(\Q(\sqrt{5}) \) None \(0\) \(0\) \(2\) \(-4\) $-$ $-$ $+$ $\mathrm{SU}(2)$
13520.2.a.bs 13520.a 1.a $2$ $107.958$ \(\Q(\sqrt{10}) \) None \(0\) \(0\) \(2\) \(-2\) $-$ $-$ $+$ $\mathrm{SU}(2)$
13520.2.a.bt 13520.a 1.a $2$ $107.958$ \(\Q(\sqrt{17}) \) None \(0\) \(1\) \(-2\) \(2\) $+$ $+$ $+$ $\mathrm{SU}(2)$
13520.2.a.bu 13520.a 1.a $2$ $107.958$ \(\Q(\sqrt{17}) \) None \(0\) \(1\) \(2\) \(-2\) $+$ $-$ $+$ $\mathrm{SU}(2)$
13520.2.a.bv 13520.a 1.a $2$ $107.958$ \(\Q(\sqrt{3}) \) None \(0\) \(2\) \(-2\) \(6\) $-$ $+$ $-$ $\mathrm{SU}(2)$
13520.2.a.bw 13520.a 1.a $2$ $107.958$ \(\Q(\sqrt{3}) \) None \(0\) \(2\) \(2\) \(-6\) $-$ $-$ $-$ $\mathrm{SU}(2)$
13520.2.a.bx 13520.a 1.a $2$ $107.958$ \(\Q(\sqrt{3}) \) None \(0\) \(2\) \(2\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$
13520.2.a.by 13520.a 1.a $2$ $107.958$ \(\Q(\sqrt{3}) \) None \(0\) \(2\) \(2\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$
13520.2.a.bz 13520.a 1.a $2$ $107.958$ \(\Q(\sqrt{2}) \) None \(0\) \(4\) \(-2\) \(-4\) $+$ $+$ $+$ $\mathrm{SU}(2)$
13520.2.a.ca 13520.a 1.a $3$ $107.958$ \(\Q(\zeta_{14})^+\) None \(0\) \(-3\) \(-3\) \(1\) $+$ $+$ $+$ $\mathrm{SU}(2)$
13520.2.a.cb 13520.a 1.a $3$ $107.958$ \(\Q(\zeta_{14})^+\) None \(0\) \(-3\) \(3\) \(-1\) $+$ $-$ $-$ $\mathrm{SU}(2)$
13520.2.a.cc 13520.a 1.a $3$ $107.958$ 3.3.564.1 None \(0\) \(-2\) \(-3\) \(-2\) $-$ $+$ $+$ $\mathrm{SU}(2)$
13520.2.a.cd 13520.a 1.a $3$ $107.958$ 3.3.1016.1 None \(0\) \(-1\) \(-3\) \(-9\) $+$ $+$ $+$ $\mathrm{SU}(2)$
13520.2.a.ce 13520.a 1.a $3$ $107.958$ \(\Q(\zeta_{14})^+\) None \(0\) \(-1\) \(-3\) \(-5\) $-$ $+$ $+$ $\mathrm{SU}(2)$
13520.2.a.cf 13520.a 1.a $3$ $107.958$ \(\Q(\zeta_{14})^+\) None \(0\) \(-1\) \(3\) \(5\) $-$ $-$ $-$ $\mathrm{SU}(2)$
13520.2.a.cg 13520.a 1.a $3$ $107.958$ 3.3.1016.1 None \(0\) \(-1\) \(3\) \(9\) $+$ $-$ $+$ $\mathrm{SU}(2)$
13520.2.a.ch 13520.a 1.a $3$ $107.958$ 3.3.756.1 None \(0\) \(0\) \(-3\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$
13520.2.a.ci 13520.a 1.a $3$ $107.958$ 3.3.148.1 None \(0\) \(0\) \(-3\) \(2\) $+$ $+$ $-$ $\mathrm{SU}(2)$
13520.2.a.cj 13520.a 1.a $3$ $107.958$ 3.3.148.1 None \(0\) \(0\) \(3\) \(-2\) $+$ $-$ $-$ $\mathrm{SU}(2)$
13520.2.a.ck 13520.a 1.a $3$ $107.958$ 3.3.756.1 None \(0\) \(0\) \(3\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$
13520.2.a.cl 13520.a 1.a $3$ $107.958$ \(\Q(\zeta_{14})^+\) None \(0\) \(1\) \(-3\) \(-2\) $-$ $+$ $-$ $\mathrm{SU}(2)$
13520.2.a.cm 13520.a 1.a $3$ $107.958$ \(\Q(\zeta_{14})^+\) None \(0\) \(1\) \(-3\) \(1\) $-$ $+$ $-$ $\mathrm{SU}(2)$
13520.2.a.cn 13520.a 1.a $3$ $107.958$ \(\Q(\zeta_{14})^+\) None \(0\) \(1\) \(3\) \(-1\) $-$ $-$ $+$ $\mathrm{SU}(2)$
13520.2.a.co 13520.a 1.a $3$ $107.958$ \(\Q(\zeta_{14})^+\) None \(0\) \(1\) \(3\) \(2\) $-$ $-$ $+$ $\mathrm{SU}(2)$
13520.2.a.cp 13520.a 1.a $3$ $107.958$ 3.3.564.1 None \(0\) \(2\) \(-3\) \(-2\) $-$ $+$ $-$ $\mathrm{SU}(2)$
13520.2.a.cq 13520.a 1.a $3$ $107.958$ 3.3.564.1 None \(0\) \(2\) \(3\) \(2\) $-$ $-$ $-$ $\mathrm{SU}(2)$
13520.2.a.cr 13520.a 1.a $3$ $107.958$ \(\Q(\zeta_{14})^+\) None \(0\) \(5\) \(-3\) \(-5\) $-$ $+$ $+$ $\mathrm{SU}(2)$
13520.2.a.cs 13520.a 1.a $3$ $107.958$ \(\Q(\zeta_{14})^+\) None \(0\) \(5\) \(3\) \(5\) $-$ $-$ $-$ $\mathrm{SU}(2)$
13520.2.a.ct 13520.a 1.a $4$ $107.958$ 4.4.4752.1 None \(0\) \(-2\) \(-4\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$
13520.2.a.cu 13520.a 1.a $4$ $107.958$ 4.4.4752.1 None \(0\) \(-2\) \(-4\) \(6\) $-$ $+$ $-$ $\mathrm{SU}(2)$
13520.2.a.cv 13520.a 1.a $4$ $107.958$ 4.4.34868.1 None \(0\) \(-2\) \(-4\) \(6\) $+$ $+$ $-$ $\mathrm{SU}(2)$
13520.2.a.cw 13520.a 1.a $4$ $107.958$ 4.4.4752.1 None \(0\) \(-2\) \(4\) \(-6\) $-$ $-$ $-$ $\mathrm{SU}(2)$
13520.2.a.cx 13520.a 1.a $4$ $107.958$ 4.4.34868.1 None \(0\) \(-2\) \(4\) \(-6\) $+$ $-$ $-$ $\mathrm{SU}(2)$
13520.2.a.cy 13520.a 1.a $4$ $107.958$ 4.4.4752.1 None \(0\) \(-2\) \(4\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$
13520.2.a.cz 13520.a 1.a $4$ $107.958$ 4.4.25488.1 None \(0\) \(0\) \(-4\) \(-4\) $+$ $+$ $+$ $\mathrm{SU}(2)$
13520.2.a.da 13520.a 1.a $4$ $107.958$ 4.4.25488.1 None \(0\) \(0\) \(4\) \(4\) $+$ $-$ $+$ $\mathrm{SU}(2)$
13520.2.a.db 13520.a 1.a $4$ $107.958$ 4.4.4752.1 None \(0\) \(2\) \(-4\) \(-10\) $-$ $+$ $-$ $\mathrm{SU}(2)$
13520.2.a.dc 13520.a 1.a $4$ $107.958$ 4.4.4752.1 None \(0\) \(2\) \(4\) \(10\) $-$ $-$ $-$ $\mathrm{SU}(2)$
13520.2.a.dd 13520.a 1.a $6$ $107.958$ 6.6.2249737.1 None \(0\) \(0\) \(-6\) \(-2\) $+$ $+$ $+$ $\mathrm{SU}(2)$
13520.2.a.de 13520.a 1.a $6$ $107.958$ 6.6.7674048.1 None \(0\) \(0\) \(-6\) \(4\) $+$ $+$ $-$ $\mathrm{SU}(2)$
13520.2.a.df 13520.a 1.a $6$ $107.958$ 6.6.7674048.1 None \(0\) \(0\) \(6\) \(-4\) $+$ $-$ $-$ $\mathrm{SU}(2)$
13520.2.a.dg 13520.a 1.a $6$ $107.958$ 6.6.2249737.1 None \(0\) \(0\) \(6\) \(2\) $+$ $-$ $-$ $\mathrm{SU}(2)$
13520.2.a.dh 13520.a 1.a $6$ $107.958$ 6.6.406193977.1 None \(0\) \(2\) \(-6\) \(1\) $+$ $+$ $+$ $\mathrm{SU}(2)$
13520.2.a.di 13520.a 1.a $6$ $107.958$ 6.6.20439713.1 None \(0\) \(2\) \(-6\) \(3\) $-$ $+$ $+$ $\mathrm{SU}(2)$
13520.2.a.dj 13520.a 1.a $6$ $107.958$ 6.6.20439713.1 None \(0\) \(2\) \(6\) \(-3\) $-$ $-$ $-$ $\mathrm{SU}(2)$
13520.2.a.dk 13520.a 1.a $6$ $107.958$ 6.6.406193977.1 None \(0\) \(2\) \(6\) \(-1\) $+$ $-$ $-$ $\mathrm{SU}(2)$
13520.2.a.dl 13520.a 1.a $8$ $107.958$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(0\) \(-4\) \(-8\) \(6\) $+$ $+$ $-$ $\mathrm{SU}(2)$
13520.2.a.dm 13520.a 1.a $8$ $107.958$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(0\) \(-4\) \(8\) \(-6\) $+$ $-$ $-$ $\mathrm{SU}(2)$
13520.2.a.dn 13520.a 1.a $9$ $107.958$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None \(0\) \(-7\) \(-9\) \(7\) $-$ $+$ $-$ $\mathrm{SU}(2)$
13520.2.a.do 13520.a 1.a $9$ $107.958$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None \(0\) \(-7\) \(9\) \(-7\) $-$ $-$ $+$ $\mathrm{SU}(2)$
13520.2.a.dp 13520.a 1.a $9$ $107.958$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None \(0\) \(-1\) \(-9\) \(-7\) $+$ $+$ $-$ $\mathrm{SU}(2)$
13520.2.a.dq 13520.a 1.a $9$ $107.958$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None \(0\) \(-1\) \(9\) \(7\) $+$ $-$ $+$ $\mathrm{SU}(2)$
13520.2.a.dr 13520.a 1.a $9$ $107.958$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None \(0\) \(1\) \(-9\) \(1\) $-$ $+$ $+$ $\mathrm{SU}(2)$
13520.2.a.ds 13520.a 1.a $9$ $107.958$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None \(0\) \(1\) \(9\) \(-1\) $-$ $-$ $-$ $\mathrm{SU}(2)$
13520.2.a.dt 13520.a 1.a $12$ $107.958$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None \(0\) \(0\) \(-12\) \(7\) $+$ $+$ $-$ $\mathrm{SU}(2)$
13520.2.a.du 13520.a 1.a $12$ $107.958$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None \(0\) \(0\) \(12\) \(-7\) $+$ $-$ $+$ $\mathrm{SU}(2)$

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(13520))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(13520)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(65))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(104))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(130))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(169))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(208))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(260))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(338))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(520))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(676))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(845))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1040))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1352))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1690))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2704))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3380))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(6760))\)\(^{\oplus 2}\)