Defining parameters
Level: | \( N \) | \(=\) | \( 13520 = 2^{4} \cdot 5 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 13520.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 99 \) | ||
Sturm bound: | \(4368\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(13520))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2268 | 310 | 1958 |
Cusp forms | 2101 | 310 | 1791 |
Eisenstein series | 167 | 0 | 167 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | \(13\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(273\) | \(35\) | \(238\) | \(253\) | \(35\) | \(218\) | \(20\) | \(0\) | \(20\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(293\) | \(42\) | \(251\) | \(272\) | \(42\) | \(230\) | \(21\) | \(0\) | \(21\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(287\) | \(42\) | \(245\) | \(266\) | \(42\) | \(224\) | \(21\) | \(0\) | \(21\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(279\) | \(36\) | \(243\) | \(258\) | \(36\) | \(222\) | \(21\) | \(0\) | \(21\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(294\) | \(42\) | \(252\) | \(273\) | \(42\) | \(231\) | \(21\) | \(0\) | \(21\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(274\) | \(36\) | \(238\) | \(253\) | \(36\) | \(217\) | \(21\) | \(0\) | \(21\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(280\) | \(35\) | \(245\) | \(259\) | \(35\) | \(224\) | \(21\) | \(0\) | \(21\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(288\) | \(42\) | \(246\) | \(267\) | \(42\) | \(225\) | \(21\) | \(0\) | \(21\) | |||
Plus space | \(+\) | \(1106\) | \(142\) | \(964\) | \(1023\) | \(142\) | \(881\) | \(83\) | \(0\) | \(83\) | |||||
Minus space | \(-\) | \(1162\) | \(168\) | \(994\) | \(1078\) | \(168\) | \(910\) | \(84\) | \(0\) | \(84\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(13520))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 5 | 13 | |||||||
13520.2.a.a | $1$ | $107.958$ | \(\Q\) | None | \(0\) | \(-2\) | \(-1\) | \(-3\) | $+$ | $+$ | $+$ | \(q-2q^{3}-q^{5}-3q^{7}+q^{9}+5q^{11}+\cdots\) | |
13520.2.a.b | $1$ | $107.958$ | \(\Q\) | None | \(0\) | \(-2\) | \(-1\) | \(0\) | $-$ | $+$ | $-$ | \(q-2q^{3}-q^{5}+q^{9}+2q^{15}+6q^{17}+\cdots\) | |
13520.2.a.c | $1$ | $107.958$ | \(\Q\) | None | \(0\) | \(-2\) | \(-1\) | \(0\) | $+$ | $+$ | $+$ | \(q-2q^{3}-q^{5}+q^{9}+2q^{11}+2q^{15}+\cdots\) | |
13520.2.a.d | $1$ | $107.958$ | \(\Q\) | None | \(0\) | \(-2\) | \(1\) | \(-4\) | $-$ | $-$ | $+$ | \(q-2q^{3}+q^{5}-4q^{7}+q^{9}-2q^{11}+\cdots\) | |
13520.2.a.e | $1$ | $107.958$ | \(\Q\) | None | \(0\) | \(-2\) | \(1\) | \(0\) | $-$ | $-$ | $-$ | \(q-2q^{3}+q^{5}+q^{9}-2q^{15}+6q^{17}+\cdots\) | |
13520.2.a.f | $1$ | $107.958$ | \(\Q\) | None | \(0\) | \(-2\) | \(1\) | \(2\) | $-$ | $-$ | $+$ | \(q-2q^{3}+q^{5}+2q^{7}+q^{9}+4q^{11}+\cdots\) | |
13520.2.a.g | $1$ | $107.958$ | \(\Q\) | None | \(0\) | \(-2\) | \(1\) | \(3\) | $+$ | $-$ | $+$ | \(q-2q^{3}+q^{5}+3q^{7}+q^{9}-5q^{11}+\cdots\) | |
13520.2.a.h | $1$ | $107.958$ | \(\Q\) | None | \(0\) | \(-1\) | \(-1\) | \(-1\) | $-$ | $+$ | $+$ | \(q-q^{3}-q^{5}-q^{7}-2q^{9}+3q^{11}+q^{15}+\cdots\) | |
13520.2.a.i | $1$ | $107.958$ | \(\Q\) | None | \(0\) | \(-1\) | \(-1\) | \(1\) | $-$ | $+$ | $+$ | \(q-q^{3}-q^{5}+q^{7}-2q^{9}-3q^{11}+q^{15}+\cdots\) | |
13520.2.a.j | $1$ | $107.958$ | \(\Q\) | None | \(0\) | \(-1\) | \(1\) | \(-1\) | $-$ | $-$ | $+$ | \(q-q^{3}+q^{5}-q^{7}-2q^{9}+3q^{11}-q^{15}+\cdots\) | |
13520.2.a.k | $1$ | $107.958$ | \(\Q\) | None | \(0\) | \(-1\) | \(1\) | \(1\) | $-$ | $-$ | $+$ | \(q-q^{3}+q^{5}+q^{7}-2q^{9}-3q^{11}-q^{15}+\cdots\) | |
13520.2.a.l | $1$ | $107.958$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(-4\) | $+$ | $+$ | $+$ | \(q-q^{5}-4q^{7}-3q^{9}+4q^{11}+2q^{17}+\cdots\) | |
13520.2.a.m | $1$ | $107.958$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(-3\) | $-$ | $+$ | $+$ | \(q-q^{5}-3q^{7}-3q^{9}-3q^{11}-4q^{17}+\cdots\) | |
13520.2.a.n | $1$ | $107.958$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(0\) | $-$ | $+$ | $+$ | \(q-q^{5}-3q^{9}+2q^{17}-8q^{19}+4q^{23}+\cdots\) | |
13520.2.a.o | $1$ | $107.958$ | \(\Q\) | None | \(0\) | \(0\) | \(1\) | \(0\) | $+$ | $-$ | $+$ | \(q+q^{5}-3q^{9}-4q^{11}-6q^{17}+4q^{19}+\cdots\) | |
13520.2.a.p | $1$ | $107.958$ | \(\Q\) | None | \(0\) | \(0\) | \(1\) | \(3\) | $-$ | $-$ | $+$ | \(q+q^{5}+3q^{7}-3q^{9}+3q^{11}-4q^{17}+\cdots\) | |
13520.2.a.q | $1$ | $107.958$ | \(\Q\) | None | \(0\) | \(1\) | \(-1\) | \(-5\) | $-$ | $+$ | $+$ | \(q+q^{3}-q^{5}-5q^{7}-2q^{9}+5q^{11}+\cdots\) | |
13520.2.a.r | $1$ | $107.958$ | \(\Q\) | None | \(0\) | \(1\) | \(-1\) | \(-3\) | $+$ | $+$ | $+$ | \(q+q^{3}-q^{5}-3q^{7}-2q^{9}+5q^{11}+\cdots\) | |
13520.2.a.s | $1$ | $107.958$ | \(\Q\) | None | \(0\) | \(1\) | \(-1\) | \(3\) | $+$ | $+$ | $+$ | \(q+q^{3}-q^{5}+3q^{7}-2q^{9}-q^{11}-q^{15}+\cdots\) | |
13520.2.a.t | $1$ | $107.958$ | \(\Q\) | None | \(0\) | \(1\) | \(-1\) | \(3\) | $+$ | $+$ | $+$ | \(q+q^{3}-q^{5}+3q^{7}-2q^{9}+3q^{11}+\cdots\) | |
13520.2.a.u | $1$ | $107.958$ | \(\Q\) | None | \(0\) | \(1\) | \(1\) | \(-3\) | $+$ | $-$ | $+$ | \(q+q^{3}+q^{5}-3q^{7}-2q^{9}-3q^{11}+\cdots\) | |
13520.2.a.v | $1$ | $107.958$ | \(\Q\) | None | \(0\) | \(1\) | \(1\) | \(-3\) | $+$ | $-$ | $+$ | \(q+q^{3}+q^{5}-3q^{7}-2q^{9}+q^{11}+q^{15}+\cdots\) | |
13520.2.a.w | $1$ | $107.958$ | \(\Q\) | None | \(0\) | \(1\) | \(1\) | \(3\) | $+$ | $-$ | $+$ | \(q+q^{3}+q^{5}+3q^{7}-2q^{9}-5q^{11}+\cdots\) | |
13520.2.a.x | $1$ | $107.958$ | \(\Q\) | None | \(0\) | \(1\) | \(1\) | \(5\) | $-$ | $-$ | $+$ | \(q+q^{3}+q^{5}+5q^{7}-2q^{9}-5q^{11}+\cdots\) | |
13520.2.a.y | $1$ | $107.958$ | \(\Q\) | None | \(0\) | \(2\) | \(-1\) | \(-4\) | $-$ | $+$ | $+$ | \(q+2q^{3}-q^{5}-4q^{7}+q^{9}-6q^{11}+\cdots\) | |
13520.2.a.z | $1$ | $107.958$ | \(\Q\) | None | \(0\) | \(2\) | \(-1\) | \(1\) | $-$ | $+$ | $+$ | \(q+2q^{3}-q^{5}+q^{7}+q^{9}-3q^{11}-2q^{15}+\cdots\) | |
13520.2.a.ba | $1$ | $107.958$ | \(\Q\) | None | \(0\) | \(2\) | \(1\) | \(-4\) | $-$ | $-$ | $+$ | \(q+2q^{3}+q^{5}-4q^{7}+q^{9}+2q^{11}+\cdots\) | |
13520.2.a.bb | $1$ | $107.958$ | \(\Q\) | None | \(0\) | \(2\) | \(1\) | \(-1\) | $-$ | $-$ | $+$ | \(q+2q^{3}+q^{5}-q^{7}+q^{9}+3q^{11}+2q^{15}+\cdots\) | |
13520.2.a.bc | $1$ | $107.958$ | \(\Q\) | None | \(0\) | \(2\) | \(1\) | \(2\) | $-$ | $-$ | $+$ | \(q+2q^{3}+q^{5}+2q^{7}+q^{9}+2q^{15}+\cdots\) | |
13520.2.a.bd | $1$ | $107.958$ | \(\Q\) | None | \(0\) | \(3\) | \(-1\) | \(-3\) | $+$ | $+$ | $+$ | \(q+3q^{3}-q^{5}-3q^{7}+6q^{9}-5q^{11}+\cdots\) | |
13520.2.a.be | $1$ | $107.958$ | \(\Q\) | None | \(0\) | \(3\) | \(-1\) | \(3\) | $-$ | $+$ | $+$ | \(q+3q^{3}-q^{5}+3q^{7}+6q^{9}+3q^{11}+\cdots\) | |
13520.2.a.bf | $1$ | $107.958$ | \(\Q\) | None | \(0\) | \(3\) | \(1\) | \(-3\) | $-$ | $-$ | $+$ | \(q+3q^{3}+q^{5}-3q^{7}+6q^{9}-3q^{11}+\cdots\) | |
13520.2.a.bg | $1$ | $107.958$ | \(\Q\) | None | \(0\) | \(3\) | \(1\) | \(3\) | $+$ | $-$ | $+$ | \(q+3q^{3}+q^{5}+3q^{7}+6q^{9}+5q^{11}+\cdots\) | |
13520.2.a.bh | $2$ | $107.958$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(-2\) | \(-2\) | \(-2\) | $-$ | $+$ | $+$ | ||
13520.2.a.bi | $2$ | $107.958$ | \(\Q(\sqrt{13}) \) | None | \(0\) | \(-2\) | \(-2\) | \(2\) | $-$ | $+$ | $+$ | ||
13520.2.a.bj | $2$ | $107.958$ | \(\Q(\sqrt{13}) \) | None | \(0\) | \(-2\) | \(2\) | \(-2\) | $-$ | $-$ | $+$ | ||
13520.2.a.bk | $2$ | $107.958$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(-2\) | \(2\) | \(0\) | $+$ | $-$ | $+$ | ||
13520.2.a.bl | $2$ | $107.958$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(-2\) | \(2\) | \(2\) | $-$ | $-$ | $+$ | ||
13520.2.a.bm | $2$ | $107.958$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(-2\) | \(2\) | \(4\) | $-$ | $-$ | $+$ | ||
13520.2.a.bn | $2$ | $107.958$ | \(\Q(\sqrt{10}) \) | None | \(0\) | \(0\) | \(-2\) | \(2\) | $-$ | $+$ | $+$ | ||
13520.2.a.bo | $2$ | $107.958$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(0\) | \(-2\) | \(4\) | $-$ | $+$ | $+$ | ||
13520.2.a.bp | $2$ | $107.958$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(0\) | \(-2\) | \(4\) | $-$ | $+$ | $+$ | ||
13520.2.a.bq | $2$ | $107.958$ | \(\Q(\sqrt{6}) \) | None | \(0\) | \(0\) | \(-2\) | \(4\) | $+$ | $+$ | $+$ | ||
13520.2.a.br | $2$ | $107.958$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(0\) | \(2\) | \(-4\) | $-$ | $-$ | $+$ | ||
13520.2.a.bs | $2$ | $107.958$ | \(\Q(\sqrt{10}) \) | None | \(0\) | \(0\) | \(2\) | \(-2\) | $-$ | $-$ | $+$ | ||
13520.2.a.bt | $2$ | $107.958$ | \(\Q(\sqrt{17}) \) | None | \(0\) | \(1\) | \(-2\) | \(2\) | $+$ | $+$ | $+$ | ||
13520.2.a.bu | $2$ | $107.958$ | \(\Q(\sqrt{17}) \) | None | \(0\) | \(1\) | \(2\) | \(-2\) | $+$ | $-$ | $+$ | ||
13520.2.a.bv | $2$ | $107.958$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(2\) | \(-2\) | \(6\) | $-$ | $+$ | $-$ | ||
13520.2.a.bw | $2$ | $107.958$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(2\) | \(2\) | \(-6\) | $-$ | $-$ | $-$ | ||
13520.2.a.bx | $2$ | $107.958$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(2\) | \(2\) | \(0\) | $+$ | $-$ | $+$ | ||
13520.2.a.by | $2$ | $107.958$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(2\) | \(2\) | \(0\) | $+$ | $-$ | $+$ | ||
13520.2.a.bz | $2$ | $107.958$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(4\) | \(-2\) | \(-4\) | $+$ | $+$ | $+$ | ||
13520.2.a.ca | $3$ | $107.958$ | \(\Q(\zeta_{14})^+\) | None | \(0\) | \(-3\) | \(-3\) | \(1\) | $+$ | $+$ | $+$ | ||
13520.2.a.cb | $3$ | $107.958$ | \(\Q(\zeta_{14})^+\) | None | \(0\) | \(-3\) | \(3\) | \(-1\) | $+$ | $-$ | $-$ | ||
13520.2.a.cc | $3$ | $107.958$ | 3.3.564.1 | None | \(0\) | \(-2\) | \(-3\) | \(-2\) | $-$ | $+$ | $+$ | ||
13520.2.a.cd | $3$ | $107.958$ | 3.3.1016.1 | None | \(0\) | \(-1\) | \(-3\) | \(-9\) | $+$ | $+$ | $+$ | ||
13520.2.a.ce | $3$ | $107.958$ | \(\Q(\zeta_{14})^+\) | None | \(0\) | \(-1\) | \(-3\) | \(-5\) | $-$ | $+$ | $+$ | ||
13520.2.a.cf | $3$ | $107.958$ | \(\Q(\zeta_{14})^+\) | None | \(0\) | \(-1\) | \(3\) | \(5\) | $-$ | $-$ | $-$ | ||
13520.2.a.cg | $3$ | $107.958$ | 3.3.1016.1 | None | \(0\) | \(-1\) | \(3\) | \(9\) | $+$ | $-$ | $+$ | ||
13520.2.a.ch | $3$ | $107.958$ | 3.3.756.1 | None | \(0\) | \(0\) | \(-3\) | \(0\) | $-$ | $+$ | $-$ | ||
13520.2.a.ci | $3$ | $107.958$ | 3.3.148.1 | None | \(0\) | \(0\) | \(-3\) | \(2\) | $+$ | $+$ | $-$ | ||
13520.2.a.cj | $3$ | $107.958$ | 3.3.148.1 | None | \(0\) | \(0\) | \(3\) | \(-2\) | $+$ | $-$ | $-$ | ||
13520.2.a.ck | $3$ | $107.958$ | 3.3.756.1 | None | \(0\) | \(0\) | \(3\) | \(0\) | $-$ | $-$ | $-$ | ||
13520.2.a.cl | $3$ | $107.958$ | \(\Q(\zeta_{14})^+\) | None | \(0\) | \(1\) | \(-3\) | \(-2\) | $-$ | $+$ | $-$ | ||
13520.2.a.cm | $3$ | $107.958$ | \(\Q(\zeta_{14})^+\) | None | \(0\) | \(1\) | \(-3\) | \(1\) | $-$ | $+$ | $-$ | ||
13520.2.a.cn | $3$ | $107.958$ | \(\Q(\zeta_{14})^+\) | None | \(0\) | \(1\) | \(3\) | \(-1\) | $-$ | $-$ | $+$ | ||
13520.2.a.co | $3$ | $107.958$ | \(\Q(\zeta_{14})^+\) | None | \(0\) | \(1\) | \(3\) | \(2\) | $-$ | $-$ | $+$ | ||
13520.2.a.cp | $3$ | $107.958$ | 3.3.564.1 | None | \(0\) | \(2\) | \(-3\) | \(-2\) | $-$ | $+$ | $-$ | ||
13520.2.a.cq | $3$ | $107.958$ | 3.3.564.1 | None | \(0\) | \(2\) | \(3\) | \(2\) | $-$ | $-$ | $-$ | ||
13520.2.a.cr | $3$ | $107.958$ | \(\Q(\zeta_{14})^+\) | None | \(0\) | \(5\) | \(-3\) | \(-5\) | $-$ | $+$ | $+$ | ||
13520.2.a.cs | $3$ | $107.958$ | \(\Q(\zeta_{14})^+\) | None | \(0\) | \(5\) | \(3\) | \(5\) | $-$ | $-$ | $-$ | ||
13520.2.a.ct | $4$ | $107.958$ | 4.4.4752.1 | None | \(0\) | \(-2\) | \(-4\) | \(0\) | $-$ | $+$ | $-$ | ||
13520.2.a.cu | $4$ | $107.958$ | 4.4.4752.1 | None | \(0\) | \(-2\) | \(-4\) | \(6\) | $-$ | $+$ | $-$ | ||
13520.2.a.cv | $4$ | $107.958$ | 4.4.34868.1 | None | \(0\) | \(-2\) | \(-4\) | \(6\) | $+$ | $+$ | $-$ | ||
13520.2.a.cw | $4$ | $107.958$ | 4.4.4752.1 | None | \(0\) | \(-2\) | \(4\) | \(-6\) | $-$ | $-$ | $-$ | ||
13520.2.a.cx | $4$ | $107.958$ | 4.4.34868.1 | None | \(0\) | \(-2\) | \(4\) | \(-6\) | $+$ | $-$ | $-$ | ||
13520.2.a.cy | $4$ | $107.958$ | 4.4.4752.1 | None | \(0\) | \(-2\) | \(4\) | \(0\) | $-$ | $-$ | $-$ | ||
13520.2.a.cz | $4$ | $107.958$ | 4.4.25488.1 | None | \(0\) | \(0\) | \(-4\) | \(-4\) | $+$ | $+$ | $+$ | ||
13520.2.a.da | $4$ | $107.958$ | 4.4.25488.1 | None | \(0\) | \(0\) | \(4\) | \(4\) | $+$ | $-$ | $+$ | ||
13520.2.a.db | $4$ | $107.958$ | 4.4.4752.1 | None | \(0\) | \(2\) | \(-4\) | \(-10\) | $-$ | $+$ | $-$ | ||
13520.2.a.dc | $4$ | $107.958$ | 4.4.4752.1 | None | \(0\) | \(2\) | \(4\) | \(10\) | $-$ | $-$ | $-$ | ||
13520.2.a.dd | $6$ | $107.958$ | 6.6.2249737.1 | None | \(0\) | \(0\) | \(-6\) | \(-2\) | $+$ | $+$ | $+$ | ||
13520.2.a.de | $6$ | $107.958$ | 6.6.7674048.1 | None | \(0\) | \(0\) | \(-6\) | \(4\) | $+$ | $+$ | $-$ | ||
13520.2.a.df | $6$ | $107.958$ | 6.6.7674048.1 | None | \(0\) | \(0\) | \(6\) | \(-4\) | $+$ | $-$ | $-$ | ||
13520.2.a.dg | $6$ | $107.958$ | 6.6.2249737.1 | None | \(0\) | \(0\) | \(6\) | \(2\) | $+$ | $-$ | $-$ | ||
13520.2.a.dh | $6$ | $107.958$ | 6.6.406193977.1 | None | \(0\) | \(2\) | \(-6\) | \(1\) | $+$ | $+$ | $+$ | ||
13520.2.a.di | $6$ | $107.958$ | 6.6.20439713.1 | None | \(0\) | \(2\) | \(-6\) | \(3\) | $-$ | $+$ | $+$ | ||
13520.2.a.dj | $6$ | $107.958$ | 6.6.20439713.1 | None | \(0\) | \(2\) | \(6\) | \(-3\) | $-$ | $-$ | $-$ | ||
13520.2.a.dk | $6$ | $107.958$ | 6.6.406193977.1 | None | \(0\) | \(2\) | \(6\) | \(-1\) | $+$ | $-$ | $-$ | ||
13520.2.a.dl | $8$ | $107.958$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(-4\) | \(-8\) | \(6\) | $+$ | $+$ | $-$ | ||
13520.2.a.dm | $8$ | $107.958$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(-4\) | \(8\) | \(-6\) | $+$ | $-$ | $-$ | ||
13520.2.a.dn | $9$ | $107.958$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(0\) | \(-7\) | \(-9\) | \(7\) | $-$ | $+$ | $-$ | ||
13520.2.a.do | $9$ | $107.958$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(0\) | \(-7\) | \(9\) | \(-7\) | $-$ | $-$ | $+$ | ||
13520.2.a.dp | $9$ | $107.958$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(0\) | \(-1\) | \(-9\) | \(-7\) | $+$ | $+$ | $-$ | ||
13520.2.a.dq | $9$ | $107.958$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(0\) | \(-1\) | \(9\) | \(7\) | $+$ | $-$ | $+$ | ||
13520.2.a.dr | $9$ | $107.958$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(0\) | \(1\) | \(-9\) | \(1\) | $-$ | $+$ | $+$ | ||
13520.2.a.ds | $9$ | $107.958$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(0\) | \(1\) | \(9\) | \(-1\) | $-$ | $-$ | $-$ | ||
13520.2.a.dt | $12$ | $107.958$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(0\) | \(-12\) | \(7\) | $+$ | $+$ | $-$ | ||
13520.2.a.du | $12$ | $107.958$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(0\) | \(12\) | \(-7\) | $+$ | $-$ | $+$ |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(13520))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(13520)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(65))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(104))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(130))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(169))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(208))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(260))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(338))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(520))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(676))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(845))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1040))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1352))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1690))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2704))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3380))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(6760))\)\(^{\oplus 2}\)