Defining parameters
| Level: | \( N \) | \(=\) | \( 1350 = 2 \cdot 3^{3} \cdot 5^{2} \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1350.k (of order \(6\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 45 \) |
| Character field: | \(\Q(\zeta_{6})\) | ||
| Newform subspaces: | \( 3 \) | ||
| Sturm bound: | \(810\) | ||
| Trace bound: | \(11\) | ||
| Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(1350, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 1152 | 72 | 1080 |
| Cusp forms | 1008 | 72 | 936 |
| Eisenstein series | 144 | 0 | 144 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(1350, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 1350.3.k.a | $8$ | $36.785$ | \(\Q(\zeta_{24})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(\beta_{7}-\beta_{4})q^{2}-2\beta_{2} q^{4}+(3\beta_{7}+3\beta_{4}+\beta_1)q^{7}+\cdots\) |
| 1350.3.k.b | $32$ | $36.785$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
| 1350.3.k.c | $32$ | $36.785$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
Decomposition of \(S_{3}^{\mathrm{old}}(1350, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(1350, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(135, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(225, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(270, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(450, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(675, [\chi])\)\(^{\oplus 2}\)