Properties

Label 135.2.j
Level $135$
Weight $2$
Character orbit 135.j
Rep. character $\chi_{135}(19,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $8$
Newform subspaces $1$
Sturm bound $36$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 135 = 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 135.j (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 45 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(36\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(135, [\chi])\).

Total New Old
Modular forms 48 16 32
Cusp forms 24 8 16
Eisenstein series 24 8 16

Trace form

\( 8 q - 8 q^{10} + 12 q^{11} + 4 q^{16} - 8 q^{19} - 12 q^{20} - 4 q^{25} - 24 q^{26} - 12 q^{29} + 4 q^{31} - 4 q^{34} + 24 q^{35} - 4 q^{40} + 24 q^{41} + 24 q^{44} - 16 q^{46} - 4 q^{49} - 24 q^{50} + 24 q^{55}+ \cdots - 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(135, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
135.2.j.a 135.j 45.j $8$ $1.078$ \(\Q(\zeta_{24})\) None 45.2.j.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta_{6} q^{2}-\beta_{3} q^{4}+(\beta_{7}-\beta_{6}-\beta_{3}+\beta_1)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(135, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(135, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 2}\)