Properties

Label 1344.2.bj
Level $1344$
Weight $2$
Character orbit 1344.bj
Rep. character $\chi_{1344}(191,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $120$
Sturm bound $512$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1344 = 2^{6} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1344.bj (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 84 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(512\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1344, [\chi])\).

Total New Old
Modular forms 560 136 424
Cusp forms 464 120 344
Eisenstein series 96 16 80

Trace form

\( 120 q - 2 q^{9} + 10 q^{21} + 40 q^{25} + 10 q^{33} - 4 q^{37} + 22 q^{45} - 8 q^{49} - 20 q^{57} + 20 q^{61} - 4 q^{69} - 4 q^{73} - 18 q^{81} + 56 q^{85} + 14 q^{93} - 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1344, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1344, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1344, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(336, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(672, [\chi])\)\(^{\oplus 2}\)