Defining parameters
| Level: | \( N \) | \(=\) | \( 1323 = 3^{3} \cdot 7^{2} \) |
| Weight: | \( k \) | \(=\) | \( 1 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1323.br (of order \(42\) and degree \(12\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 147 \) |
| Character field: | \(\Q(\zeta_{42})\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(168\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(1323, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 84 | 12 | 72 |
| Cusp forms | 12 | 12 | 0 |
| Eisenstein series | 72 | 0 | 72 |
The following table gives the dimensions of subspaces with specified projective image type.
| \(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
|---|---|---|---|---|
| Dimension | 12 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(1323, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
| 1323.1.br.a | $12$ | $0.660$ | \(\Q(\zeta_{21})\) | $D_{21}$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(0\) | \(-2\) | \(q-\zeta_{42}^{13}q^{4}-\zeta_{42}^{3}q^{7}+(-\zeta_{42}-\zeta_{42}^{5}+\cdots)q^{13}+\cdots\) |