Properties

Label 131.2
Level 131
Weight 2
Dimension 651
Nonzero newspaces 4
Newform subspaces 7
Sturm bound 2860
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 131 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 7 \)
Sturm bound: \(2860\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(131))\).

Total New Old
Modular forms 780 780 0
Cusp forms 651 651 0
Eisenstein series 129 129 0

Trace form

\( 651 q - 62 q^{2} - 61 q^{3} - 58 q^{4} - 59 q^{5} - 53 q^{6} - 57 q^{7} - 50 q^{8} - 52 q^{9} - 47 q^{10} - 53 q^{11} - 37 q^{12} - 51 q^{13} - 41 q^{14} - 41 q^{15} - 34 q^{16} - 47 q^{17} - 26 q^{18}+ \cdots + 91 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(131))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
131.2.a \(\chi_{131}(1, \cdot)\) 131.2.a.a 1 1
131.2.a.b 10
131.2.c \(\chi_{131}(53, \cdot)\) 131.2.c.a 4 4
131.2.c.b 4
131.2.c.c 32
131.2.e \(\chi_{131}(39, \cdot)\) 131.2.e.a 120 12
131.2.g \(\chi_{131}(3, \cdot)\) 131.2.g.a 480 48