Properties

Label 13.14.e
Level $13$
Weight $14$
Character orbit 13.e
Rep. character $\chi_{13}(4,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $30$
Newform subspaces $1$
Sturm bound $16$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 13 \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 13.e (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(16\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{14}(13, [\chi])\).

Total New Old
Modular forms 34 34 0
Cusp forms 30 30 0
Eisenstein series 4 4 0

Trace form

\( 30 q - 3 q^{2} - 730 q^{3} + 65535 q^{4} - 382584 q^{6} + 438984 q^{7} - 9117071 q^{9} + 3893475 q^{10} - 5364528 q^{11} + 27694876 q^{12} - 1794135 q^{13} + 61125588 q^{14} - 113380170 q^{15} - 350182521 q^{16}+ \cdots + 86959564160763 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{14}^{\mathrm{new}}(13, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
13.14.e.a 13.e 13.e $30$ $13.940$ None 13.14.e.a \(-3\) \(-730\) \(0\) \(438984\) $\mathrm{SU}(2)[C_{6}]$