Defining parameters
| Level: | \( N \) | \(=\) | \( 1296 = 2^{4} \cdot 3^{4} \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1296.bf (of order \(18\) and degree \(6\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 216 \) |
| Character field: | \(\Q(\zeta_{18})\) | ||
| Newform subspaces: | \( 0 \) | ||
| Sturm bound: | \(648\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(1296, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 2664 | 0 | 2664 |
| Cusp forms | 2520 | 0 | 2520 |
| Eisenstein series | 144 | 0 | 144 |
Decomposition of \(S_{3}^{\mathrm{old}}(1296, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(1296, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(216, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(648, [\chi])\)\(^{\oplus 2}\)