Properties

Label 1290.2.q
Level $1290$
Weight $2$
Character orbit 1290.q
Rep. character $\chi_{1290}(1211,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $120$
Sturm bound $528$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1290 = 2 \cdot 3 \cdot 5 \cdot 43 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1290.q (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 129 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(528\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1290, [\chi])\).

Total New Old
Modular forms 544 120 424
Cusp forms 512 120 392
Eisenstein series 32 0 32

Trace form

\( 120 q + 120 q^{4} - 2 q^{6} + 2 q^{9} + 8 q^{13} + 120 q^{16} + 12 q^{19} - 2 q^{24} - 60 q^{25} + 6 q^{30} + 12 q^{31} - 12 q^{33} + 2 q^{36} + 48 q^{37} + 20 q^{43} + 36 q^{46} + 116 q^{49} + 8 q^{52}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1290, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1290, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1290, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(129, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(258, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(645, [\chi])\)\(^{\oplus 2}\)