Properties

Label 1290.2.j
Level $1290$
Weight $2$
Character orbit 1290.j
Rep. character $\chi_{1290}(173,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $168$
Sturm bound $528$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1290 = 2 \cdot 3 \cdot 5 \cdot 43 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1290.j (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 15 \)
Character field: \(\Q(i)\)
Sturm bound: \(528\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1290, [\chi])\).

Total New Old
Modular forms 544 168 376
Cusp forms 512 168 344
Eisenstein series 32 0 32

Trace form

\( 168 q + 8 q^{3} + 8 q^{7} - 8 q^{10} - 8 q^{12} + 16 q^{13} - 16 q^{15} - 168 q^{16} - 16 q^{18} - 16 q^{21} + 8 q^{22} + 32 q^{25} + 32 q^{27} + 8 q^{28} - 8 q^{33} + 16 q^{36} - 48 q^{37} - 16 q^{40}+ \cdots - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1290, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1290, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1290, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(645, [\chi])\)\(^{\oplus 2}\)