Properties

Label 128.10.g
Level $128$
Weight $10$
Character orbit 128.g
Rep. character $\chi_{128}(17,\cdot)$
Character field $\Q(\zeta_{8})$
Dimension $140$
Sturm bound $160$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 128 = 2^{7} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 128.g (of order \(8\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 32 \)
Character field: \(\Q(\zeta_{8})\)
Sturm bound: \(160\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(128, [\chi])\).

Total New Old
Modular forms 592 148 444
Cusp forms 560 140 420
Eisenstein series 32 8 24

Trace form

\( 140 q + 4 q^{3} - 4 q^{5} + 4 q^{7} - 4 q^{9} + 4 q^{11} - 4 q^{13} + 4 q^{19} - 4 q^{21} + 3465980 q^{23} - 4 q^{25} + 12650092 q^{27} - 4 q^{29} - 22164496 q^{31} - 8 q^{33} + 38240620 q^{35} - 4 q^{37}+ \cdots + 1556903760 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(128, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{10}^{\mathrm{old}}(128, [\chi])\) into lower level spaces

\( S_{10}^{\mathrm{old}}(128, [\chi]) \simeq \) \(S_{10}^{\mathrm{new}}(32, [\chi])\)\(^{\oplus 3}\)