Properties

Label 12705.2.a.j
Level $12705$
Weight $2$
Character orbit 12705.a
Self dual yes
Analytic conductor $101.450$
Dimension $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [12705,2,Mod(1,12705)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("12705.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(12705, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 12705 = 3 \cdot 5 \cdot 7 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 12705.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,1,-2,1,0,1,0,1,0,0,-2,4,0,1,4,5,0,-1,-2,1,0,-5,0,1,0,1,-2, -3,0,-6,0,0,0,1,-2,-12,0,4,0,2,0,-13,0,1,0,-6,4,1,0,5,-8,1,0,0,0,-1,0, -11,-2,-5,0,1,-8,4,0,-10,-10,-5,0,-6,0,4,0,1,2,0,0,8,4,1,0,-5,-2,5,0,-3, 0,13,0,4,10,-6,0,-1,0,-19,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(101.449935768\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: not computed
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{3} - 2 q^{4} + q^{5} + q^{7} + q^{9} - 2 q^{12} + 4 q^{13} + q^{15} + 4 q^{16} + 5 q^{17} - q^{19} - 2 q^{20} + q^{21} - 5 q^{23} + q^{25} + q^{27} - 2 q^{28} - 3 q^{29} - 6 q^{31} + q^{35}+ \cdots - 19 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)
\(7\) \( -1 \)
\(11\) \( -1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.