Properties

Label 1225.2.bi
Level $1225$
Weight $2$
Character orbit 1225.bi
Rep. character $\chi_{1225}(117,\cdot)$
Character field $\Q(\zeta_{60})$
Dimension $1536$
Sturm bound $280$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1225 = 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1225.bi (of order \(60\) and degree \(16\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 175 \)
Character field: \(\Q(\zeta_{60})\)
Sturm bound: \(280\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1225, [\chi])\).

Total New Old
Modular forms 2368 1664 704
Cusp forms 2112 1536 576
Eisenstein series 256 128 128

Trace form

\( 1536 q + 8 q^{2} + 24 q^{3} + 10 q^{4} + 30 q^{5} - 60 q^{8} + 10 q^{9} + 36 q^{10} + 6 q^{11} + 36 q^{12} - 68 q^{15} - 162 q^{16} + 42 q^{17} + 46 q^{18} + 30 q^{19} - 192 q^{22} + 64 q^{23} - 10 q^{25}+ \cdots + 90 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1225, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1225, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1225, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(175, [\chi])\)\(^{\oplus 2}\)