Properties

Label 12138.2.w
Level $12138$
Weight $2$
Character orbit 12138.w
Rep. character $\chi_{12138}(1889,\cdot)$
Character field $\Q(\zeta_{8})$
Dimension $2880$
Sturm bound $4896$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 12138 = 2 \cdot 3 \cdot 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 12138.w (of order \(8\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 357 \)
Character field: \(\Q(\zeta_{8})\)
Sturm bound: \(4896\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(12138, [\chi])\).

Total New Old
Modular forms 10080 2880 7200
Cusp forms 9504 2880 6624
Eisenstein series 576 0 576

Decomposition of \(S_{2}^{\mathrm{new}}(12138, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(12138, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(12138, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(357, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(714, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(6069, [\chi])\)\(^{\oplus 2}\)