Defining parameters
Level: | \( N \) | \(=\) | \( 12138 = 2 \cdot 3 \cdot 7 \cdot 17^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 12138.f (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 21 \) |
Character field: | \(\Q\) | ||
Sturm bound: | \(4896\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(12138, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2520 | 724 | 1796 |
Cusp forms | 2376 | 724 | 1652 |
Eisenstein series | 144 | 0 | 144 |
Decomposition of \(S_{2}^{\mathrm{new}}(12138, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(12138, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(12138, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(357, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(714, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(6069, [\chi])\)\(^{\oplus 2}\)