Properties

Label 12138.2.f
Level $12138$
Weight $2$
Character orbit 12138.f
Rep. character $\chi_{12138}(9827,\cdot)$
Character field $\Q$
Dimension $724$
Sturm bound $4896$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 12138 = 2 \cdot 3 \cdot 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 12138.f (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 21 \)
Character field: \(\Q\)
Sturm bound: \(4896\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(12138, [\chi])\).

Total New Old
Modular forms 2520 724 1796
Cusp forms 2376 724 1652
Eisenstein series 144 0 144

Decomposition of \(S_{2}^{\mathrm{new}}(12138, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(12138, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(12138, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(357, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(714, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(6069, [\chi])\)\(^{\oplus 2}\)