Properties

Label 119.2.g
Level $119$
Weight $2$
Character orbit 119.g
Rep. character $\chi_{119}(64,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $20$
Newform subspaces $1$
Sturm bound $24$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 119 = 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 119.g (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 17 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(24\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(119, [\chi])\).

Total New Old
Modular forms 28 20 8
Cusp forms 20 20 0
Eisenstein series 8 0 8

Trace form

\( 20 q - 4 q^{3} - 24 q^{4} - 8 q^{5} + 4 q^{6} + 4 q^{10} - 4 q^{11} + 12 q^{12} + 16 q^{16} - 12 q^{17} - 8 q^{18} + 20 q^{20} - 8 q^{21} - 20 q^{22} + 4 q^{24} + 8 q^{27} + 16 q^{29} - 36 q^{30} + 4 q^{31}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(119, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
119.2.g.a 119.g 17.c $20$ $0.950$ \(\mathbb{Q}[x]/(x^{20} + \cdots)\) None 119.2.g.a \(0\) \(-4\) \(-8\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{1}q^{2}+\beta _{17}q^{3}+(-2+\beta _{12}+\beta _{13}+\cdots)q^{4}+\cdots\)