Properties

Label 1184.2.bk
Level $1184$
Weight $2$
Character orbit 1184.bk
Rep. character $\chi_{1184}(33,\cdot)$
Character field $\Q(\zeta_{9})$
Dimension $228$
Sturm bound $304$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1184 = 2^{5} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1184.bk (of order \(9\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 37 \)
Character field: \(\Q(\zeta_{9})\)
Sturm bound: \(304\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1184, [\chi])\).

Total New Old
Modular forms 960 228 732
Cusp forms 864 228 636
Eisenstein series 96 0 96

Trace form

\( 228 q + 6 q^{5} + 48 q^{13} - 18 q^{17} - 24 q^{21} - 18 q^{25} - 24 q^{37} - 18 q^{41} - 24 q^{49} - 72 q^{53} - 60 q^{61} + 42 q^{65} - 36 q^{73} - 30 q^{85} + 60 q^{89} - 48 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1184, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1184, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1184, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(37, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(74, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(148, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(296, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(592, [\chi])\)\(^{\oplus 2}\)