Defining parameters
| Level: | \( N \) | \(=\) | \( 1184 = 2^{5} \cdot 37 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1184.bk (of order \(9\) and degree \(6\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 37 \) |
| Character field: | \(\Q(\zeta_{9})\) | ||
| Sturm bound: | \(304\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1184, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 960 | 228 | 732 |
| Cusp forms | 864 | 228 | 636 |
| Eisenstein series | 96 | 0 | 96 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1184, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(1184, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1184, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(37, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(74, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(148, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(296, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(592, [\chi])\)\(^{\oplus 2}\)