Properties

Label 118.2.a
Level $118$
Weight $2$
Character orbit 118.a
Rep. character $\chi_{118}(1,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $4$
Sturm bound $30$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 118 = 2 \cdot 59 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 118.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(30\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(118))\).

Total New Old
Modular forms 17 4 13
Cusp forms 14 4 10
Eisenstein series 3 0 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(59\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(1\)\(1\)\(0\)\(1\)\(1\)\(0\)\(0\)\(0\)\(0\)
\(+\)\(-\)\(-\)\(7\)\(1\)\(6\)\(6\)\(1\)\(5\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(3\)\(2\)\(1\)\(2\)\(2\)\(0\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(6\)\(0\)\(6\)\(5\)\(0\)\(5\)\(1\)\(0\)\(1\)
Plus space\(+\)\(7\)\(1\)\(6\)\(6\)\(1\)\(5\)\(1\)\(0\)\(1\)
Minus space\(-\)\(10\)\(3\)\(7\)\(8\)\(3\)\(5\)\(2\)\(0\)\(2\)

Trace form

\( 4 q + 2 q^{3} + 4 q^{4} - 2 q^{5} - 4 q^{7} - 2 q^{9} + 2 q^{12} - 8 q^{13} + 4 q^{14} + 2 q^{15} + 4 q^{16} + 2 q^{17} - 6 q^{19} - 2 q^{20} - 14 q^{21} + 2 q^{22} + 16 q^{23} - 2 q^{25} - 10 q^{26} + 2 q^{27}+ \cdots + 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(118))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 59
118.2.a.a 118.a 1.a $1$ $0.942$ \(\Q\) None 118.2.a.a \(-1\) \(-1\) \(-3\) \(-1\) $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}-3q^{5}+q^{6}-q^{7}+\cdots\)
118.2.a.b 118.a 1.a $1$ $0.942$ \(\Q\) None 118.2.a.b \(-1\) \(2\) \(2\) \(-3\) $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+2q^{3}+q^{4}+2q^{5}-2q^{6}-3q^{7}+\cdots\)
118.2.a.c 118.a 1.a $1$ $0.942$ \(\Q\) None 118.2.a.c \(1\) \(-1\) \(1\) \(3\) $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+3q^{7}+\cdots\)
118.2.a.d 118.a 1.a $1$ $0.942$ \(\Q\) None 118.2.a.d \(1\) \(2\) \(-2\) \(-3\) $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+2q^{3}+q^{4}-2q^{5}+2q^{6}-3q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(118))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(118)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(59))\)\(^{\oplus 2}\)