Defining parameters
Level: | \( N \) | \(=\) | \( 118 = 2 \cdot 59 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 118.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(30\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(118))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 17 | 4 | 13 |
Cusp forms | 14 | 4 | 10 |
Eisenstein series | 3 | 0 | 3 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(59\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||
\(+\) | \(+\) | \(+\) | \(1\) | \(1\) | \(0\) | \(1\) | \(1\) | \(0\) | \(0\) | \(0\) | \(0\) | |||
\(+\) | \(-\) | \(-\) | \(7\) | \(1\) | \(6\) | \(6\) | \(1\) | \(5\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(-\) | \(3\) | \(2\) | \(1\) | \(2\) | \(2\) | \(0\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(+\) | \(6\) | \(0\) | \(6\) | \(5\) | \(0\) | \(5\) | \(1\) | \(0\) | \(1\) | |||
Plus space | \(+\) | \(7\) | \(1\) | \(6\) | \(6\) | \(1\) | \(5\) | \(1\) | \(0\) | \(1\) | ||||
Minus space | \(-\) | \(10\) | \(3\) | \(7\) | \(8\) | \(3\) | \(5\) | \(2\) | \(0\) | \(2\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(118))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 59 | |||||||
118.2.a.a | $1$ | $0.942$ | \(\Q\) | None | \(-1\) | \(-1\) | \(-3\) | \(-1\) | $+$ | $+$ | \(q-q^{2}-q^{3}+q^{4}-3q^{5}+q^{6}-q^{7}+\cdots\) | |
118.2.a.b | $1$ | $0.942$ | \(\Q\) | None | \(-1\) | \(2\) | \(2\) | \(-3\) | $+$ | $-$ | \(q-q^{2}+2q^{3}+q^{4}+2q^{5}-2q^{6}-3q^{7}+\cdots\) | |
118.2.a.c | $1$ | $0.942$ | \(\Q\) | None | \(1\) | \(-1\) | \(1\) | \(3\) | $-$ | $+$ | \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+3q^{7}+\cdots\) | |
118.2.a.d | $1$ | $0.942$ | \(\Q\) | None | \(1\) | \(2\) | \(-2\) | \(-3\) | $-$ | $+$ | \(q+q^{2}+2q^{3}+q^{4}-2q^{5}+2q^{6}-3q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(118))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(118)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(59))\)\(^{\oplus 2}\)