Properties

Label 117.3.p
Level $117$
Weight $3$
Character orbit 117.p
Rep. character $\chi_{117}(35,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $20$
Newform subspaces $1$
Sturm bound $42$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.p (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 39 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(42\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(117, [\chi])\).

Total New Old
Modular forms 64 20 44
Cusp forms 48 20 28
Eisenstein series 16 0 16

Trace form

\( 20 q + 24 q^{4} - 6 q^{7} + 12 q^{10} - 2 q^{13} - 104 q^{16} - 92 q^{19} + 44 q^{22} - 116 q^{25} + 76 q^{28} - 156 q^{31} + 80 q^{34} + 148 q^{37} + 328 q^{40} + 186 q^{43} + 164 q^{46} + 8 q^{49} + 392 q^{52}+ \cdots - 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(117, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
117.3.p.a 117.p 39.i $20$ $3.188$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 117.3.p.a \(0\) \(0\) \(0\) \(-6\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{5}q^{2}+(2\beta _{3}-\beta _{4})q^{4}+(\beta _{8}-\beta _{15}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(117, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(117, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 2}\)