Defining parameters
| Level: | \( N \) | \(=\) | \( 117 = 3^{2} \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 117.p (of order \(6\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 39 \) |
| Character field: | \(\Q(\zeta_{6})\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(42\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(117, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 64 | 20 | 44 |
| Cusp forms | 48 | 20 | 28 |
| Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(117, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 117.3.p.a | $20$ | $3.188$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(-6\) | \(q-\beta _{5}q^{2}+(2\beta _{3}-\beta _{4})q^{4}+(\beta _{8}-\beta _{15}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(117, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(117, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 2}\)