Properties

Label 117.10.a.g.1.7
Level $117$
Weight $10$
Character 117.1
Self dual yes
Analytic conductor $60.259$
Analytic rank $1$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [117,10,Mod(1,117)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("117.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(117, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 117.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.2591928312\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2613x^{6} + 2010020x^{4} - 399948096x^{2} + 6898597888 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{11}\cdot 3^{4}\cdot 7 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(31.9131\) of defining polynomial
Character \(\chi\) \(=\) 117.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+31.9131 q^{2} +506.444 q^{4} -1635.60 q^{5} +9377.46 q^{7} -177.316 q^{8} -52197.1 q^{10} -74.3848 q^{11} -28561.0 q^{13} +299264. q^{14} -264958. q^{16} -21083.6 q^{17} -967016. q^{19} -828340. q^{20} -2373.85 q^{22} +1.49197e6 q^{23} +722067. q^{25} -911469. q^{26} +4.74916e6 q^{28} +744914. q^{29} -5.33293e6 q^{31} -8.36483e6 q^{32} -672841. q^{34} -1.53378e7 q^{35} -1.21137e7 q^{37} -3.08605e7 q^{38} +290017. q^{40} +1.06424e7 q^{41} -3.31733e7 q^{43} -37671.7 q^{44} +4.76134e7 q^{46} -5.10256e7 q^{47} +4.75832e7 q^{49} +2.30434e7 q^{50} -1.44645e7 q^{52} -8.32040e7 q^{53} +121664. q^{55} -1.66277e6 q^{56} +2.37725e7 q^{58} +9.70896e7 q^{59} -1.05052e8 q^{61} -1.70190e8 q^{62} -1.31289e8 q^{64} +4.67144e7 q^{65} -2.17098e8 q^{67} -1.06776e7 q^{68} -4.89476e8 q^{70} +3.05805e8 q^{71} +8.93888e7 q^{73} -3.86586e8 q^{74} -4.89739e8 q^{76} -697540. q^{77} -8.48632e7 q^{79} +4.33366e8 q^{80} +3.39631e8 q^{82} +4.41256e8 q^{83} +3.44843e7 q^{85} -1.05866e9 q^{86} +13189.6 q^{88} +2.29385e8 q^{89} -2.67830e8 q^{91} +7.55600e8 q^{92} -1.62838e9 q^{94} +1.58165e9 q^{95} +4.66565e8 q^{97} +1.51852e9 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 1130 q^{4} + 9756 q^{7} - 38516 q^{10} - 228488 q^{13} - 314526 q^{16} - 884340 q^{19} - 1422584 q^{22} + 1535856 q^{25} - 1630900 q^{28} - 12449540 q^{31} - 6019872 q^{34} + 6397904 q^{37} - 13411388 q^{40}+ \cdots - 3297114688 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 31.9131 1.41037 0.705186 0.709023i \(-0.250864\pi\)
0.705186 + 0.709023i \(0.250864\pi\)
\(3\) 0 0
\(4\) 506.444 0.989148
\(5\) −1635.60 −1.17034 −0.585171 0.810910i \(-0.698972\pi\)
−0.585171 + 0.810910i \(0.698972\pi\)
\(6\) 0 0
\(7\) 9377.46 1.47620 0.738098 0.674693i \(-0.235724\pi\)
0.738098 + 0.674693i \(0.235724\pi\)
\(8\) −177.316 −0.0153053
\(9\) 0 0
\(10\) −52197.1 −1.65062
\(11\) −74.3848 −0.00153185 −0.000765926 1.00000i \(-0.500244\pi\)
−0.000765926 1.00000i \(0.500244\pi\)
\(12\) 0 0
\(13\) −28561.0 −0.277350
\(14\) 299264. 2.08199
\(15\) 0 0
\(16\) −264958. −1.01073
\(17\) −21083.6 −0.0612243 −0.0306121 0.999531i \(-0.509746\pi\)
−0.0306121 + 0.999531i \(0.509746\pi\)
\(18\) 0 0
\(19\) −967016. −1.70233 −0.851163 0.524902i \(-0.824102\pi\)
−0.851163 + 0.524902i \(0.824102\pi\)
\(20\) −828340. −1.15764
\(21\) 0 0
\(22\) −2373.85 −0.00216048
\(23\) 1.49197e6 1.11169 0.555847 0.831285i \(-0.312394\pi\)
0.555847 + 0.831285i \(0.312394\pi\)
\(24\) 0 0
\(25\) 722067. 0.369698
\(26\) −911469. −0.391167
\(27\) 0 0
\(28\) 4.74916e6 1.46018
\(29\) 744914. 0.195576 0.0977879 0.995207i \(-0.468823\pi\)
0.0977879 + 0.995207i \(0.468823\pi\)
\(30\) 0 0
\(31\) −5.33293e6 −1.03714 −0.518571 0.855035i \(-0.673536\pi\)
−0.518571 + 0.855035i \(0.673536\pi\)
\(32\) −8.36483e6 −1.41021
\(33\) 0 0
\(34\) −672841. −0.0863490
\(35\) −1.53378e7 −1.72765
\(36\) 0 0
\(37\) −1.21137e7 −1.06260 −0.531300 0.847184i \(-0.678296\pi\)
−0.531300 + 0.847184i \(0.678296\pi\)
\(38\) −3.08605e7 −2.40091
\(39\) 0 0
\(40\) 290017. 0.0179124
\(41\) 1.06424e7 0.588181 0.294091 0.955778i \(-0.404983\pi\)
0.294091 + 0.955778i \(0.404983\pi\)
\(42\) 0 0
\(43\) −3.31733e7 −1.47972 −0.739861 0.672759i \(-0.765109\pi\)
−0.739861 + 0.672759i \(0.765109\pi\)
\(44\) −37671.7 −0.00151523
\(45\) 0 0
\(46\) 4.76134e7 1.56790
\(47\) −5.10256e7 −1.52527 −0.762637 0.646827i \(-0.776096\pi\)
−0.762637 + 0.646827i \(0.776096\pi\)
\(48\) 0 0
\(49\) 4.75832e7 1.17916
\(50\) 2.30434e7 0.521412
\(51\) 0 0
\(52\) −1.44645e7 −0.274340
\(53\) −8.32040e7 −1.44845 −0.724223 0.689565i \(-0.757802\pi\)
−0.724223 + 0.689565i \(0.757802\pi\)
\(54\) 0 0
\(55\) 121664. 0.00179279
\(56\) −1.66277e6 −0.0225936
\(57\) 0 0
\(58\) 2.37725e7 0.275835
\(59\) 9.70896e7 1.04313 0.521566 0.853211i \(-0.325348\pi\)
0.521566 + 0.853211i \(0.325348\pi\)
\(60\) 0 0
\(61\) −1.05052e8 −0.971447 −0.485724 0.874112i \(-0.661444\pi\)
−0.485724 + 0.874112i \(0.661444\pi\)
\(62\) −1.70190e8 −1.46275
\(63\) 0 0
\(64\) −1.31289e8 −0.978180
\(65\) 4.67144e7 0.324594
\(66\) 0 0
\(67\) −2.17098e8 −1.31619 −0.658097 0.752933i \(-0.728638\pi\)
−0.658097 + 0.752933i \(0.728638\pi\)
\(68\) −1.06776e7 −0.0605599
\(69\) 0 0
\(70\) −4.89476e8 −2.43663
\(71\) 3.05805e8 1.42818 0.714088 0.700056i \(-0.246842\pi\)
0.714088 + 0.700056i \(0.246842\pi\)
\(72\) 0 0
\(73\) 8.93888e7 0.368409 0.184205 0.982888i \(-0.441029\pi\)
0.184205 + 0.982888i \(0.441029\pi\)
\(74\) −3.86586e8 −1.49866
\(75\) 0 0
\(76\) −4.89739e8 −1.68385
\(77\) −697540. −0.00226131
\(78\) 0 0
\(79\) −8.48632e7 −0.245131 −0.122565 0.992460i \(-0.539112\pi\)
−0.122565 + 0.992460i \(0.539112\pi\)
\(80\) 4.33366e8 1.18290
\(81\) 0 0
\(82\) 3.39631e8 0.829554
\(83\) 4.41256e8 1.02056 0.510280 0.860008i \(-0.329542\pi\)
0.510280 + 0.860008i \(0.329542\pi\)
\(84\) 0 0
\(85\) 3.44843e7 0.0716533
\(86\) −1.05866e9 −2.08696
\(87\) 0 0
\(88\) 13189.6 2.34455e−5 0
\(89\) 2.29385e8 0.387535 0.193767 0.981048i \(-0.437929\pi\)
0.193767 + 0.981048i \(0.437929\pi\)
\(90\) 0 0
\(91\) −2.67830e8 −0.409423
\(92\) 7.55600e8 1.09963
\(93\) 0 0
\(94\) −1.62838e9 −2.15120
\(95\) 1.58165e9 1.99230
\(96\) 0 0
\(97\) 4.66565e8 0.535106 0.267553 0.963543i \(-0.413785\pi\)
0.267553 + 0.963543i \(0.413785\pi\)
\(98\) 1.51852e9 1.66305
\(99\) 0 0
\(100\) 3.65686e8 0.365686
\(101\) 1.55744e9 1.48924 0.744620 0.667488i \(-0.232631\pi\)
0.744620 + 0.667488i \(0.232631\pi\)
\(102\) 0 0
\(103\) 1.43030e9 1.25216 0.626082 0.779757i \(-0.284658\pi\)
0.626082 + 0.779757i \(0.284658\pi\)
\(104\) 5.06431e6 0.00424493
\(105\) 0 0
\(106\) −2.65529e9 −2.04285
\(107\) −2.52831e9 −1.86468 −0.932339 0.361585i \(-0.882236\pi\)
−0.932339 + 0.361585i \(0.882236\pi\)
\(108\) 0 0
\(109\) −1.44244e8 −0.0978762 −0.0489381 0.998802i \(-0.515584\pi\)
−0.0489381 + 0.998802i \(0.515584\pi\)
\(110\) 3.88267e6 0.00252850
\(111\) 0 0
\(112\) −2.48463e9 −1.49204
\(113\) −6.66656e8 −0.384635 −0.192318 0.981333i \(-0.561600\pi\)
−0.192318 + 0.981333i \(0.561600\pi\)
\(114\) 0 0
\(115\) −2.44027e9 −1.30106
\(116\) 3.77257e8 0.193453
\(117\) 0 0
\(118\) 3.09843e9 1.47120
\(119\) −1.97710e8 −0.0903791
\(120\) 0 0
\(121\) −2.35794e9 −0.999998
\(122\) −3.35253e9 −1.37010
\(123\) 0 0
\(124\) −2.70083e9 −1.02589
\(125\) 2.01352e9 0.737668
\(126\) 0 0
\(127\) 2.39963e9 0.818515 0.409258 0.912419i \(-0.365788\pi\)
0.409258 + 0.912419i \(0.365788\pi\)
\(128\) 9.29589e7 0.0306088
\(129\) 0 0
\(130\) 1.49080e9 0.457798
\(131\) −1.80325e9 −0.534978 −0.267489 0.963561i \(-0.586194\pi\)
−0.267489 + 0.963561i \(0.586194\pi\)
\(132\) 0 0
\(133\) −9.06816e9 −2.51297
\(134\) −6.92828e9 −1.85632
\(135\) 0 0
\(136\) 3.73844e6 0.000937056 0
\(137\) −2.25443e9 −0.546758 −0.273379 0.961906i \(-0.588141\pi\)
−0.273379 + 0.961906i \(0.588141\pi\)
\(138\) 0 0
\(139\) 3.86030e9 0.877111 0.438556 0.898704i \(-0.355490\pi\)
0.438556 + 0.898704i \(0.355490\pi\)
\(140\) −7.76773e9 −1.70890
\(141\) 0 0
\(142\) 9.75916e9 2.01426
\(143\) 2.12450e6 0.000424859 0
\(144\) 0 0
\(145\) −1.21838e9 −0.228890
\(146\) 2.85267e9 0.519594
\(147\) 0 0
\(148\) −6.13492e9 −1.05107
\(149\) −7.79151e9 −1.29504 −0.647520 0.762048i \(-0.724194\pi\)
−0.647520 + 0.762048i \(0.724194\pi\)
\(150\) 0 0
\(151\) 7.53509e9 1.17949 0.589743 0.807591i \(-0.299229\pi\)
0.589743 + 0.807591i \(0.299229\pi\)
\(152\) 1.71467e8 0.0260546
\(153\) 0 0
\(154\) −2.22606e7 −0.00318929
\(155\) 8.72254e9 1.21381
\(156\) 0 0
\(157\) 8.46506e9 1.11194 0.555970 0.831202i \(-0.312347\pi\)
0.555970 + 0.831202i \(0.312347\pi\)
\(158\) −2.70824e9 −0.345725
\(159\) 0 0
\(160\) 1.36815e10 1.65042
\(161\) 1.39909e10 1.64108
\(162\) 0 0
\(163\) −7.61688e8 −0.0845149 −0.0422574 0.999107i \(-0.513455\pi\)
−0.0422574 + 0.999107i \(0.513455\pi\)
\(164\) 5.38976e9 0.581798
\(165\) 0 0
\(166\) 1.40818e10 1.43937
\(167\) 1.74042e9 0.173153 0.0865763 0.996245i \(-0.472407\pi\)
0.0865763 + 0.996245i \(0.472407\pi\)
\(168\) 0 0
\(169\) 8.15731e8 0.0769231
\(170\) 1.10050e9 0.101058
\(171\) 0 0
\(172\) −1.68004e10 −1.46366
\(173\) −1.12865e10 −0.957969 −0.478985 0.877823i \(-0.658995\pi\)
−0.478985 + 0.877823i \(0.658995\pi\)
\(174\) 0 0
\(175\) 6.77115e9 0.545747
\(176\) 1.97088e7 0.00154830
\(177\) 0 0
\(178\) 7.32039e9 0.546568
\(179\) 1.60955e10 1.17183 0.585916 0.810372i \(-0.300735\pi\)
0.585916 + 0.810372i \(0.300735\pi\)
\(180\) 0 0
\(181\) −1.86841e10 −1.29395 −0.646977 0.762509i \(-0.723967\pi\)
−0.646977 + 0.762509i \(0.723967\pi\)
\(182\) −8.54727e9 −0.577439
\(183\) 0 0
\(184\) −2.64550e8 −0.0170148
\(185\) 1.98132e10 1.24360
\(186\) 0 0
\(187\) 1.56830e6 9.37866e−5 0
\(188\) −2.58416e10 −1.50872
\(189\) 0 0
\(190\) 5.04754e10 2.80989
\(191\) 1.59100e10 0.865010 0.432505 0.901631i \(-0.357630\pi\)
0.432505 + 0.901631i \(0.357630\pi\)
\(192\) 0 0
\(193\) 2.10791e9 0.109357 0.0546783 0.998504i \(-0.482587\pi\)
0.0546783 + 0.998504i \(0.482587\pi\)
\(194\) 1.48895e10 0.754698
\(195\) 0 0
\(196\) 2.40982e10 1.16636
\(197\) −2.17603e9 −0.102936 −0.0514679 0.998675i \(-0.516390\pi\)
−0.0514679 + 0.998675i \(0.516390\pi\)
\(198\) 0 0
\(199\) −2.82660e9 −0.127769 −0.0638844 0.997957i \(-0.520349\pi\)
−0.0638844 + 0.997957i \(0.520349\pi\)
\(200\) −1.28034e8 −0.00565834
\(201\) 0 0
\(202\) 4.97026e10 2.10038
\(203\) 6.98540e9 0.288708
\(204\) 0 0
\(205\) −1.74067e10 −0.688373
\(206\) 4.56454e10 1.76602
\(207\) 0 0
\(208\) 7.56746e9 0.280327
\(209\) 7.19313e7 0.00260771
\(210\) 0 0
\(211\) 2.75512e9 0.0956906 0.0478453 0.998855i \(-0.484765\pi\)
0.0478453 + 0.998855i \(0.484765\pi\)
\(212\) −4.21381e10 −1.43273
\(213\) 0 0
\(214\) −8.06862e10 −2.62989
\(215\) 5.42583e10 1.73178
\(216\) 0 0
\(217\) −5.00093e10 −1.53102
\(218\) −4.60325e9 −0.138042
\(219\) 0 0
\(220\) 6.16159e7 0.00177333
\(221\) 6.02167e8 0.0169806
\(222\) 0 0
\(223\) 3.45788e9 0.0936350 0.0468175 0.998903i \(-0.485092\pi\)
0.0468175 + 0.998903i \(0.485092\pi\)
\(224\) −7.84409e10 −2.08174
\(225\) 0 0
\(226\) −2.12750e10 −0.542478
\(227\) 6.29759e10 1.57419 0.787096 0.616830i \(-0.211583\pi\)
0.787096 + 0.616830i \(0.211583\pi\)
\(228\) 0 0
\(229\) 2.76028e10 0.663274 0.331637 0.943407i \(-0.392399\pi\)
0.331637 + 0.943407i \(0.392399\pi\)
\(230\) −7.78765e10 −1.83498
\(231\) 0 0
\(232\) −1.32085e8 −0.00299335
\(233\) 7.86651e10 1.74856 0.874280 0.485423i \(-0.161334\pi\)
0.874280 + 0.485423i \(0.161334\pi\)
\(234\) 0 0
\(235\) 8.34575e10 1.78509
\(236\) 4.91705e10 1.03181
\(237\) 0 0
\(238\) −6.30954e9 −0.127468
\(239\) −1.98319e10 −0.393164 −0.196582 0.980487i \(-0.562984\pi\)
−0.196582 + 0.980487i \(0.562984\pi\)
\(240\) 0 0
\(241\) −2.09497e10 −0.400038 −0.200019 0.979792i \(-0.564100\pi\)
−0.200019 + 0.979792i \(0.564100\pi\)
\(242\) −7.52492e10 −1.41037
\(243\) 0 0
\(244\) −5.32028e10 −0.960905
\(245\) −7.78271e10 −1.38001
\(246\) 0 0
\(247\) 2.76190e10 0.472140
\(248\) 9.45610e8 0.0158738
\(249\) 0 0
\(250\) 6.42576e10 1.04039
\(251\) 6.38611e9 0.101556 0.0507779 0.998710i \(-0.483830\pi\)
0.0507779 + 0.998710i \(0.483830\pi\)
\(252\) 0 0
\(253\) −1.10980e8 −0.00170295
\(254\) 7.65794e10 1.15441
\(255\) 0 0
\(256\) 7.01866e10 1.02135
\(257\) −2.49862e10 −0.357274 −0.178637 0.983915i \(-0.557169\pi\)
−0.178637 + 0.983915i \(0.557169\pi\)
\(258\) 0 0
\(259\) −1.13596e11 −1.56861
\(260\) 2.36582e10 0.321072
\(261\) 0 0
\(262\) −5.75473e10 −0.754518
\(263\) −1.23695e11 −1.59423 −0.797116 0.603827i \(-0.793642\pi\)
−0.797116 + 0.603827i \(0.793642\pi\)
\(264\) 0 0
\(265\) 1.36088e11 1.69518
\(266\) −2.89393e11 −3.54422
\(267\) 0 0
\(268\) −1.09948e11 −1.30191
\(269\) −9.78701e10 −1.13963 −0.569816 0.821772i \(-0.692986\pi\)
−0.569816 + 0.821772i \(0.692986\pi\)
\(270\) 0 0
\(271\) −3.83068e10 −0.431433 −0.215717 0.976456i \(-0.569209\pi\)
−0.215717 + 0.976456i \(0.569209\pi\)
\(272\) 5.58626e9 0.0618815
\(273\) 0 0
\(274\) −7.19459e10 −0.771132
\(275\) −5.37108e7 −0.000566323 0
\(276\) 0 0
\(277\) −1.74121e11 −1.77702 −0.888509 0.458859i \(-0.848258\pi\)
−0.888509 + 0.458859i \(0.848258\pi\)
\(278\) 1.23194e11 1.23705
\(279\) 0 0
\(280\) 2.71963e9 0.0264422
\(281\) −1.39295e11 −1.33277 −0.666386 0.745607i \(-0.732160\pi\)
−0.666386 + 0.745607i \(0.732160\pi\)
\(282\) 0 0
\(283\) −2.05354e11 −1.90311 −0.951555 0.307477i \(-0.900515\pi\)
−0.951555 + 0.307477i \(0.900515\pi\)
\(284\) 1.54873e11 1.41268
\(285\) 0 0
\(286\) 6.77994e7 0.000599210 0
\(287\) 9.97984e10 0.868271
\(288\) 0 0
\(289\) −1.18143e11 −0.996252
\(290\) −3.88823e10 −0.322821
\(291\) 0 0
\(292\) 4.52704e10 0.364411
\(293\) 5.52246e10 0.437752 0.218876 0.975753i \(-0.429761\pi\)
0.218876 + 0.975753i \(0.429761\pi\)
\(294\) 0 0
\(295\) −1.58800e11 −1.22082
\(296\) 2.14795e9 0.0162634
\(297\) 0 0
\(298\) −2.48651e11 −1.82649
\(299\) −4.26122e10 −0.308328
\(300\) 0 0
\(301\) −3.11081e11 −2.18436
\(302\) 2.40468e11 1.66351
\(303\) 0 0
\(304\) 2.56219e11 1.72060
\(305\) 1.71823e11 1.13692
\(306\) 0 0
\(307\) 1.58590e11 1.01895 0.509476 0.860485i \(-0.329839\pi\)
0.509476 + 0.860485i \(0.329839\pi\)
\(308\) −3.53265e8 −0.00223677
\(309\) 0 0
\(310\) 2.78363e11 1.71192
\(311\) 4.54685e10 0.275606 0.137803 0.990460i \(-0.455996\pi\)
0.137803 + 0.990460i \(0.455996\pi\)
\(312\) 0 0
\(313\) −4.85320e10 −0.285811 −0.142906 0.989736i \(-0.545645\pi\)
−0.142906 + 0.989736i \(0.545645\pi\)
\(314\) 2.70146e11 1.56825
\(315\) 0 0
\(316\) −4.29784e10 −0.242470
\(317\) −1.20808e11 −0.671940 −0.335970 0.941873i \(-0.609064\pi\)
−0.335970 + 0.941873i \(0.609064\pi\)
\(318\) 0 0
\(319\) −5.54102e7 −0.000299593 0
\(320\) 2.14737e11 1.14480
\(321\) 0 0
\(322\) 4.46493e11 2.31453
\(323\) 2.03881e10 0.104224
\(324\) 0 0
\(325\) −2.06229e10 −0.102536
\(326\) −2.43078e10 −0.119197
\(327\) 0 0
\(328\) −1.88706e9 −0.00900229
\(329\) −4.78490e11 −2.25160
\(330\) 0 0
\(331\) 3.42530e11 1.56846 0.784228 0.620473i \(-0.213059\pi\)
0.784228 + 0.620473i \(0.213059\pi\)
\(332\) 2.23471e11 1.00949
\(333\) 0 0
\(334\) 5.55420e10 0.244209
\(335\) 3.55086e11 1.54040
\(336\) 0 0
\(337\) 4.51920e9 0.0190865 0.00954327 0.999954i \(-0.496962\pi\)
0.00954327 + 0.999954i \(0.496962\pi\)
\(338\) 2.60325e10 0.108490
\(339\) 0 0
\(340\) 1.74644e10 0.0708757
\(341\) 3.96688e8 0.00158875
\(342\) 0 0
\(343\) 6.77949e10 0.264468
\(344\) 5.88214e9 0.0226476
\(345\) 0 0
\(346\) −3.60187e11 −1.35109
\(347\) 3.96340e11 1.46752 0.733762 0.679407i \(-0.237763\pi\)
0.733762 + 0.679407i \(0.237763\pi\)
\(348\) 0 0
\(349\) −2.94824e11 −1.06377 −0.531885 0.846817i \(-0.678516\pi\)
−0.531885 + 0.846817i \(0.678516\pi\)
\(350\) 2.16088e11 0.769706
\(351\) 0 0
\(352\) 6.22216e8 0.00216023
\(353\) −2.48932e11 −0.853286 −0.426643 0.904420i \(-0.640304\pi\)
−0.426643 + 0.904420i \(0.640304\pi\)
\(354\) 0 0
\(355\) −5.00174e11 −1.67145
\(356\) 1.16171e11 0.383329
\(357\) 0 0
\(358\) 5.13656e11 1.65272
\(359\) −9.97869e10 −0.317065 −0.158533 0.987354i \(-0.550676\pi\)
−0.158533 + 0.987354i \(0.550676\pi\)
\(360\) 0 0
\(361\) 6.12433e11 1.89791
\(362\) −5.96268e11 −1.82496
\(363\) 0 0
\(364\) −1.35641e11 −0.404980
\(365\) −1.46204e11 −0.431164
\(366\) 0 0
\(367\) 1.78985e11 0.515015 0.257507 0.966276i \(-0.417099\pi\)
0.257507 + 0.966276i \(0.417099\pi\)
\(368\) −3.95310e11 −1.12363
\(369\) 0 0
\(370\) 6.32301e11 1.75394
\(371\) −7.80242e11 −2.13819
\(372\) 0 0
\(373\) −1.55535e11 −0.416044 −0.208022 0.978124i \(-0.566703\pi\)
−0.208022 + 0.978124i \(0.566703\pi\)
\(374\) 5.00491e7 0.000132274 0
\(375\) 0 0
\(376\) 9.04763e9 0.0233448
\(377\) −2.12755e10 −0.0542430
\(378\) 0 0
\(379\) −5.02913e11 −1.25203 −0.626017 0.779809i \(-0.715316\pi\)
−0.626017 + 0.779809i \(0.715316\pi\)
\(380\) 8.01018e11 1.97068
\(381\) 0 0
\(382\) 5.07738e11 1.21999
\(383\) −5.65974e11 −1.34401 −0.672004 0.740548i \(-0.734566\pi\)
−0.672004 + 0.740548i \(0.734566\pi\)
\(384\) 0 0
\(385\) 1.14090e9 0.00264651
\(386\) 6.72700e10 0.154233
\(387\) 0 0
\(388\) 2.36289e11 0.529299
\(389\) 1.93917e11 0.429380 0.214690 0.976682i \(-0.431126\pi\)
0.214690 + 0.976682i \(0.431126\pi\)
\(390\) 0 0
\(391\) −3.14561e10 −0.0680627
\(392\) −8.43723e9 −0.0180473
\(393\) 0 0
\(394\) −6.94438e10 −0.145178
\(395\) 1.38802e11 0.286886
\(396\) 0 0
\(397\) 2.39924e11 0.484748 0.242374 0.970183i \(-0.422074\pi\)
0.242374 + 0.970183i \(0.422074\pi\)
\(398\) −9.02053e10 −0.180202
\(399\) 0 0
\(400\) −1.91317e11 −0.373667
\(401\) −9.60416e11 −1.85485 −0.927427 0.374004i \(-0.877984\pi\)
−0.927427 + 0.374004i \(0.877984\pi\)
\(402\) 0 0
\(403\) 1.52314e11 0.287651
\(404\) 7.88755e11 1.47308
\(405\) 0 0
\(406\) 2.22926e11 0.407186
\(407\) 9.01076e8 0.00162775
\(408\) 0 0
\(409\) 4.33056e11 0.765225 0.382613 0.923909i \(-0.375024\pi\)
0.382613 + 0.923909i \(0.375024\pi\)
\(410\) −5.55501e11 −0.970861
\(411\) 0 0
\(412\) 7.24369e11 1.23857
\(413\) 9.10454e11 1.53987
\(414\) 0 0
\(415\) −7.21718e11 −1.19440
\(416\) 2.38908e11 0.391121
\(417\) 0 0
\(418\) 2.29555e9 0.00367784
\(419\) −6.61052e11 −1.04779 −0.523893 0.851784i \(-0.675521\pi\)
−0.523893 + 0.851784i \(0.675521\pi\)
\(420\) 0 0
\(421\) 1.84053e11 0.285544 0.142772 0.989756i \(-0.454398\pi\)
0.142772 + 0.989756i \(0.454398\pi\)
\(422\) 8.79243e10 0.134959
\(423\) 0 0
\(424\) 1.47534e10 0.0221689
\(425\) −1.52237e10 −0.0226345
\(426\) 0 0
\(427\) −9.85119e11 −1.43405
\(428\) −1.28045e12 −1.84444
\(429\) 0 0
\(430\) 1.73155e12 2.44245
\(431\) 9.41302e11 1.31396 0.656979 0.753909i \(-0.271834\pi\)
0.656979 + 0.753909i \(0.271834\pi\)
\(432\) 0 0
\(433\) 1.30198e12 1.77996 0.889978 0.456004i \(-0.150720\pi\)
0.889978 + 0.456004i \(0.150720\pi\)
\(434\) −1.59595e12 −2.15931
\(435\) 0 0
\(436\) −7.30513e10 −0.0968141
\(437\) −1.44276e12 −1.89247
\(438\) 0 0
\(439\) −1.39753e12 −1.79585 −0.897927 0.440144i \(-0.854927\pi\)
−0.897927 + 0.440144i \(0.854927\pi\)
\(440\) −2.15729e7 −2.74392e−5 0
\(441\) 0 0
\(442\) 1.92170e10 0.0239489
\(443\) 1.11492e12 1.37539 0.687695 0.725999i \(-0.258623\pi\)
0.687695 + 0.725999i \(0.258623\pi\)
\(444\) 0 0
\(445\) −3.75183e11 −0.453548
\(446\) 1.10352e11 0.132060
\(447\) 0 0
\(448\) −1.23116e12 −1.44399
\(449\) 1.12477e12 1.30604 0.653018 0.757343i \(-0.273503\pi\)
0.653018 + 0.757343i \(0.273503\pi\)
\(450\) 0 0
\(451\) −7.91630e8 −0.000901007 0
\(452\) −3.37624e11 −0.380461
\(453\) 0 0
\(454\) 2.00975e12 2.22020
\(455\) 4.38063e11 0.479165
\(456\) 0 0
\(457\) 1.53500e11 0.164621 0.0823105 0.996607i \(-0.473770\pi\)
0.0823105 + 0.996607i \(0.473770\pi\)
\(458\) 8.80889e11 0.935463
\(459\) 0 0
\(460\) −1.23586e12 −1.28694
\(461\) 8.04982e11 0.830103 0.415051 0.909798i \(-0.363764\pi\)
0.415051 + 0.909798i \(0.363764\pi\)
\(462\) 0 0
\(463\) 9.38936e10 0.0949558 0.0474779 0.998872i \(-0.484882\pi\)
0.0474779 + 0.998872i \(0.484882\pi\)
\(464\) −1.97371e11 −0.197675
\(465\) 0 0
\(466\) 2.51044e12 2.46612
\(467\) −8.94027e11 −0.869810 −0.434905 0.900476i \(-0.643218\pi\)
−0.434905 + 0.900476i \(0.643218\pi\)
\(468\) 0 0
\(469\) −2.03583e12 −1.94296
\(470\) 2.66339e12 2.51764
\(471\) 0 0
\(472\) −1.72155e10 −0.0159654
\(473\) 2.46759e9 0.00226672
\(474\) 0 0
\(475\) −6.98250e11 −0.629347
\(476\) −1.00129e11 −0.0893983
\(477\) 0 0
\(478\) −6.32896e11 −0.554507
\(479\) −1.84695e12 −1.60304 −0.801520 0.597968i \(-0.795975\pi\)
−0.801520 + 0.597968i \(0.795975\pi\)
\(480\) 0 0
\(481\) 3.45980e11 0.294712
\(482\) −6.68569e11 −0.564202
\(483\) 0 0
\(484\) −1.19417e12 −0.989146
\(485\) −7.63115e11 −0.626256
\(486\) 0 0
\(487\) −1.40809e12 −1.13436 −0.567178 0.823595i \(-0.691965\pi\)
−0.567178 + 0.823595i \(0.691965\pi\)
\(488\) 1.86273e10 0.0148683
\(489\) 0 0
\(490\) −2.48370e12 −1.94633
\(491\) 2.38257e12 1.85003 0.925015 0.379931i \(-0.124052\pi\)
0.925015 + 0.379931i \(0.124052\pi\)
\(492\) 0 0
\(493\) −1.57054e10 −0.0119740
\(494\) 8.81405e11 0.665893
\(495\) 0 0
\(496\) 1.41300e12 1.04827
\(497\) 2.86767e12 2.10827
\(498\) 0 0
\(499\) −4.28780e11 −0.309586 −0.154793 0.987947i \(-0.549471\pi\)
−0.154793 + 0.987947i \(0.549471\pi\)
\(500\) 1.01973e12 0.729663
\(501\) 0 0
\(502\) 2.03800e11 0.143231
\(503\) 4.32750e11 0.301426 0.150713 0.988578i \(-0.451843\pi\)
0.150713 + 0.988578i \(0.451843\pi\)
\(504\) 0 0
\(505\) −2.54735e12 −1.74292
\(506\) −3.54171e9 −0.00240179
\(507\) 0 0
\(508\) 1.21528e12 0.809633
\(509\) 8.12557e11 0.536567 0.268284 0.963340i \(-0.413544\pi\)
0.268284 + 0.963340i \(0.413544\pi\)
\(510\) 0 0
\(511\) 8.38240e11 0.543844
\(512\) 2.19227e12 1.40987
\(513\) 0 0
\(514\) −7.97386e11 −0.503889
\(515\) −2.33941e12 −1.46546
\(516\) 0 0
\(517\) 3.79553e9 0.00233649
\(518\) −3.62519e12 −2.21232
\(519\) 0 0
\(520\) −8.28319e9 −0.00496801
\(521\) 1.15899e12 0.689145 0.344572 0.938760i \(-0.388024\pi\)
0.344572 + 0.938760i \(0.388024\pi\)
\(522\) 0 0
\(523\) 5.57641e11 0.325910 0.162955 0.986634i \(-0.447898\pi\)
0.162955 + 0.986634i \(0.447898\pi\)
\(524\) −9.13246e11 −0.529172
\(525\) 0 0
\(526\) −3.94749e12 −2.24846
\(527\) 1.12437e11 0.0634982
\(528\) 0 0
\(529\) 4.24826e11 0.235864
\(530\) 4.34300e12 2.39083
\(531\) 0 0
\(532\) −4.59251e12 −2.48570
\(533\) −3.03957e11 −0.163132
\(534\) 0 0
\(535\) 4.13531e12 2.18231
\(536\) 3.84949e10 0.0201447
\(537\) 0 0
\(538\) −3.12334e12 −1.60731
\(539\) −3.53946e9 −0.00180629
\(540\) 0 0
\(541\) 1.59082e12 0.798425 0.399213 0.916858i \(-0.369283\pi\)
0.399213 + 0.916858i \(0.369283\pi\)
\(542\) −1.22249e12 −0.608481
\(543\) 0 0
\(544\) 1.76360e11 0.0863388
\(545\) 2.35925e11 0.114549
\(546\) 0 0
\(547\) −2.29550e12 −1.09631 −0.548155 0.836377i \(-0.684670\pi\)
−0.548155 + 0.836377i \(0.684670\pi\)
\(548\) −1.14174e12 −0.540824
\(549\) 0 0
\(550\) −1.71408e9 −0.000798726 0
\(551\) −7.20344e11 −0.332934
\(552\) 0 0
\(553\) −7.95801e11 −0.361861
\(554\) −5.55673e12 −2.50626
\(555\) 0 0
\(556\) 1.95503e12 0.867593
\(557\) −1.43761e12 −0.632840 −0.316420 0.948619i \(-0.602481\pi\)
−0.316420 + 0.948619i \(0.602481\pi\)
\(558\) 0 0
\(559\) 9.47462e11 0.410401
\(560\) 4.06387e12 1.74620
\(561\) 0 0
\(562\) −4.44532e12 −1.87970
\(563\) −4.09132e12 −1.71623 −0.858115 0.513458i \(-0.828364\pi\)
−0.858115 + 0.513458i \(0.828364\pi\)
\(564\) 0 0
\(565\) 1.09038e12 0.450154
\(566\) −6.55347e12 −2.68409
\(567\) 0 0
\(568\) −5.42239e10 −0.0218586
\(569\) −3.59636e12 −1.43833 −0.719164 0.694840i \(-0.755475\pi\)
−0.719164 + 0.694840i \(0.755475\pi\)
\(570\) 0 0
\(571\) 4.80155e12 1.89025 0.945125 0.326709i \(-0.105940\pi\)
0.945125 + 0.326709i \(0.105940\pi\)
\(572\) 1.07594e9 0.000420249 0
\(573\) 0 0
\(574\) 3.18487e12 1.22458
\(575\) 1.07730e12 0.410991
\(576\) 0 0
\(577\) −3.56080e12 −1.33738 −0.668692 0.743540i \(-0.733145\pi\)
−0.668692 + 0.743540i \(0.733145\pi\)
\(578\) −3.77032e12 −1.40508
\(579\) 0 0
\(580\) −6.17042e11 −0.226407
\(581\) 4.13786e12 1.50655
\(582\) 0 0
\(583\) 6.18911e9 0.00221881
\(584\) −1.58500e10 −0.00563861
\(585\) 0 0
\(586\) 1.76239e12 0.617393
\(587\) 4.79964e12 1.66854 0.834272 0.551354i \(-0.185888\pi\)
0.834272 + 0.551354i \(0.185888\pi\)
\(588\) 0 0
\(589\) 5.15703e12 1.76555
\(590\) −5.06779e12 −1.72181
\(591\) 0 0
\(592\) 3.20963e12 1.07401
\(593\) 4.85669e12 1.61285 0.806425 0.591336i \(-0.201399\pi\)
0.806425 + 0.591336i \(0.201399\pi\)
\(594\) 0 0
\(595\) 3.23375e11 0.105774
\(596\) −3.94596e12 −1.28099
\(597\) 0 0
\(598\) −1.35989e12 −0.434858
\(599\) −6.93558e10 −0.0220121 −0.0110061 0.999939i \(-0.503503\pi\)
−0.0110061 + 0.999939i \(0.503503\pi\)
\(600\) 0 0
\(601\) 3.19131e12 0.997779 0.498889 0.866666i \(-0.333741\pi\)
0.498889 + 0.866666i \(0.333741\pi\)
\(602\) −9.92755e12 −3.08076
\(603\) 0 0
\(604\) 3.81610e12 1.16669
\(605\) 3.85665e12 1.17034
\(606\) 0 0
\(607\) −8.42635e11 −0.251936 −0.125968 0.992034i \(-0.540204\pi\)
−0.125968 + 0.992034i \(0.540204\pi\)
\(608\) 8.08893e12 2.40063
\(609\) 0 0
\(610\) 5.48340e12 1.60349
\(611\) 1.45734e12 0.423035
\(612\) 0 0
\(613\) −3.11060e12 −0.889757 −0.444879 0.895591i \(-0.646753\pi\)
−0.444879 + 0.895591i \(0.646753\pi\)
\(614\) 5.06110e12 1.43710
\(615\) 0 0
\(616\) 1.23685e8 3.46101e−5 0
\(617\) −5.41157e12 −1.50328 −0.751640 0.659574i \(-0.770737\pi\)
−0.751640 + 0.659574i \(0.770737\pi\)
\(618\) 0 0
\(619\) −3.45632e12 −0.946249 −0.473125 0.880996i \(-0.656874\pi\)
−0.473125 + 0.880996i \(0.656874\pi\)
\(620\) 4.41748e12 1.20064
\(621\) 0 0
\(622\) 1.45104e12 0.388707
\(623\) 2.15105e12 0.572077
\(624\) 0 0
\(625\) −4.70360e12 −1.23302
\(626\) −1.54881e12 −0.403100
\(627\) 0 0
\(628\) 4.28708e12 1.09987
\(629\) 2.55400e11 0.0650569
\(630\) 0 0
\(631\) −5.21983e12 −1.31076 −0.655382 0.755298i \(-0.727492\pi\)
−0.655382 + 0.755298i \(0.727492\pi\)
\(632\) 1.50476e10 0.00375180
\(633\) 0 0
\(634\) −3.85537e12 −0.947686
\(635\) −3.92483e12 −0.957942
\(636\) 0 0
\(637\) −1.35902e12 −0.327039
\(638\) −1.76831e9 −0.000422538 0
\(639\) 0 0
\(640\) −1.52044e11 −0.0358227
\(641\) −6.61129e12 −1.54677 −0.773384 0.633938i \(-0.781438\pi\)
−0.773384 + 0.633938i \(0.781438\pi\)
\(642\) 0 0
\(643\) 7.87205e12 1.81609 0.908047 0.418867i \(-0.137573\pi\)
0.908047 + 0.418867i \(0.137573\pi\)
\(644\) 7.08561e12 1.62327
\(645\) 0 0
\(646\) 6.50648e11 0.146994
\(647\) 4.51241e12 1.01237 0.506185 0.862425i \(-0.331055\pi\)
0.506185 + 0.862425i \(0.331055\pi\)
\(648\) 0 0
\(649\) −7.22199e9 −0.00159792
\(650\) −6.58142e11 −0.144614
\(651\) 0 0
\(652\) −3.85752e11 −0.0835977
\(653\) 3.44581e12 0.741621 0.370811 0.928708i \(-0.379080\pi\)
0.370811 + 0.928708i \(0.379080\pi\)
\(654\) 0 0
\(655\) 2.94940e12 0.626107
\(656\) −2.81978e12 −0.594495
\(657\) 0 0
\(658\) −1.52701e13 −3.17560
\(659\) −6.13892e12 −1.26797 −0.633983 0.773347i \(-0.718581\pi\)
−0.633983 + 0.773347i \(0.718581\pi\)
\(660\) 0 0
\(661\) −8.59895e11 −0.175202 −0.0876009 0.996156i \(-0.527920\pi\)
−0.0876009 + 0.996156i \(0.527920\pi\)
\(662\) 1.09312e13 2.21211
\(663\) 0 0
\(664\) −7.82415e10 −0.0156200
\(665\) 1.48319e13 2.94103
\(666\) 0 0
\(667\) 1.11139e12 0.217420
\(668\) 8.81423e11 0.171274
\(669\) 0 0
\(670\) 1.13319e13 2.17253
\(671\) 7.81425e9 0.00148811
\(672\) 0 0
\(673\) 4.15663e12 0.781041 0.390520 0.920594i \(-0.372295\pi\)
0.390520 + 0.920594i \(0.372295\pi\)
\(674\) 1.44222e11 0.0269191
\(675\) 0 0
\(676\) 4.13122e11 0.0760883
\(677\) 8.56370e12 1.56680 0.783398 0.621521i \(-0.213485\pi\)
0.783398 + 0.621521i \(0.213485\pi\)
\(678\) 0 0
\(679\) 4.37520e12 0.789921
\(680\) −6.11460e9 −0.00109668
\(681\) 0 0
\(682\) 1.26595e10 0.00224072
\(683\) −7.71959e12 −1.35738 −0.678689 0.734425i \(-0.737452\pi\)
−0.678689 + 0.734425i \(0.737452\pi\)
\(684\) 0 0
\(685\) 3.68736e12 0.639893
\(686\) 2.16354e12 0.372999
\(687\) 0 0
\(688\) 8.78952e12 1.49561
\(689\) 2.37639e12 0.401727
\(690\) 0 0
\(691\) 4.52966e12 0.755814 0.377907 0.925844i \(-0.376644\pi\)
0.377907 + 0.925844i \(0.376644\pi\)
\(692\) −5.71597e12 −0.947573
\(693\) 0 0
\(694\) 1.26484e13 2.06975
\(695\) −6.31392e12 −1.02652
\(696\) 0 0
\(697\) −2.24379e11 −0.0360110
\(698\) −9.40872e12 −1.50031
\(699\) 0 0
\(700\) 3.42921e12 0.539825
\(701\) −3.97479e12 −0.621703 −0.310852 0.950458i \(-0.600614\pi\)
−0.310852 + 0.950458i \(0.600614\pi\)
\(702\) 0 0
\(703\) 1.17142e13 1.80889
\(704\) 9.76590e9 0.00149843
\(705\) 0 0
\(706\) −7.94419e12 −1.20345
\(707\) 1.46048e13 2.19841
\(708\) 0 0
\(709\) −3.67322e11 −0.0545932 −0.0272966 0.999627i \(-0.508690\pi\)
−0.0272966 + 0.999627i \(0.508690\pi\)
\(710\) −1.59621e13 −2.35737
\(711\) 0 0
\(712\) −4.06736e10 −0.00593133
\(713\) −7.95657e12 −1.15298
\(714\) 0 0
\(715\) −3.47484e9 −0.000497230 0
\(716\) 8.15146e12 1.15912
\(717\) 0 0
\(718\) −3.18451e12 −0.447180
\(719\) −6.50487e12 −0.907734 −0.453867 0.891070i \(-0.649956\pi\)
−0.453867 + 0.891070i \(0.649956\pi\)
\(720\) 0 0
\(721\) 1.34126e13 1.84844
\(722\) 1.95446e13 2.67676
\(723\) 0 0
\(724\) −9.46246e12 −1.27991
\(725\) 5.37878e11 0.0723040
\(726\) 0 0
\(727\) −1.03562e13 −1.37497 −0.687486 0.726198i \(-0.741286\pi\)
−0.687486 + 0.726198i \(0.741286\pi\)
\(728\) 4.74904e10 0.00626634
\(729\) 0 0
\(730\) −4.66583e12 −0.608102
\(731\) 6.99411e11 0.0905950
\(732\) 0 0
\(733\) −7.33031e12 −0.937896 −0.468948 0.883226i \(-0.655367\pi\)
−0.468948 + 0.883226i \(0.655367\pi\)
\(734\) 5.71196e12 0.726362
\(735\) 0 0
\(736\) −1.24801e13 −1.56772
\(737\) 1.61488e10 0.00201622
\(738\) 0 0
\(739\) −1.10338e13 −1.36090 −0.680448 0.732796i \(-0.738215\pi\)
−0.680448 + 0.732796i \(0.738215\pi\)
\(740\) 1.00343e13 1.23011
\(741\) 0 0
\(742\) −2.48999e13 −3.01564
\(743\) 9.14558e12 1.10093 0.550467 0.834857i \(-0.314450\pi\)
0.550467 + 0.834857i \(0.314450\pi\)
\(744\) 0 0
\(745\) 1.27438e13 1.51564
\(746\) −4.96361e12 −0.586776
\(747\) 0 0
\(748\) 7.94253e8 9.27688e−5 0
\(749\) −2.37092e13 −2.75263
\(750\) 0 0
\(751\) 6.13184e12 0.703414 0.351707 0.936110i \(-0.385601\pi\)
0.351707 + 0.936110i \(0.385601\pi\)
\(752\) 1.35196e13 1.54165
\(753\) 0 0
\(754\) −6.78966e11 −0.0765028
\(755\) −1.23244e13 −1.38040
\(756\) 0 0
\(757\) −6.68988e11 −0.0740435 −0.0370218 0.999314i \(-0.511787\pi\)
−0.0370218 + 0.999314i \(0.511787\pi\)
\(758\) −1.60495e13 −1.76583
\(759\) 0 0
\(760\) −2.80452e11 −0.0304928
\(761\) 6.21021e12 0.671236 0.335618 0.941998i \(-0.391055\pi\)
0.335618 + 0.941998i \(0.391055\pi\)
\(762\) 0 0
\(763\) −1.35264e12 −0.144485
\(764\) 8.05754e12 0.855623
\(765\) 0 0
\(766\) −1.80620e13 −1.89555
\(767\) −2.77298e12 −0.289313
\(768\) 0 0
\(769\) 1.60156e13 1.65149 0.825744 0.564046i \(-0.190756\pi\)
0.825744 + 0.564046i \(0.190756\pi\)
\(770\) 3.64095e10 0.00373256
\(771\) 0 0
\(772\) 1.06754e12 0.108170
\(773\) −5.39801e12 −0.543783 −0.271892 0.962328i \(-0.587649\pi\)
−0.271892 + 0.962328i \(0.587649\pi\)
\(774\) 0 0
\(775\) −3.85073e12 −0.383429
\(776\) −8.27293e10 −0.00818996
\(777\) 0 0
\(778\) 6.18848e12 0.605586
\(779\) −1.02913e13 −1.00128
\(780\) 0 0
\(781\) −2.27472e10 −0.00218775
\(782\) −1.00386e12 −0.0959937
\(783\) 0 0
\(784\) −1.26075e13 −1.19181
\(785\) −1.38455e13 −1.30135
\(786\) 0 0
\(787\) −4.49004e12 −0.417219 −0.208609 0.977999i \(-0.566894\pi\)
−0.208609 + 0.977999i \(0.566894\pi\)
\(788\) −1.10204e12 −0.101819
\(789\) 0 0
\(790\) 4.42961e12 0.404616
\(791\) −6.25154e12 −0.567797
\(792\) 0 0
\(793\) 3.00039e12 0.269431
\(794\) 7.65671e12 0.683675
\(795\) 0 0
\(796\) −1.43151e12 −0.126382
\(797\) −1.09919e13 −0.964965 −0.482482 0.875906i \(-0.660265\pi\)
−0.482482 + 0.875906i \(0.660265\pi\)
\(798\) 0 0
\(799\) 1.07580e12 0.0933838
\(800\) −6.03997e12 −0.521350
\(801\) 0 0
\(802\) −3.06498e13 −2.61603
\(803\) −6.64917e9 −0.000564348 0
\(804\) 0 0
\(805\) −2.28835e13 −1.92062
\(806\) 4.86080e12 0.405695
\(807\) 0 0
\(808\) −2.76158e11 −0.0227933
\(809\) −1.66900e13 −1.36989 −0.684947 0.728593i \(-0.740175\pi\)
−0.684947 + 0.728593i \(0.740175\pi\)
\(810\) 0 0
\(811\) 6.11644e12 0.496484 0.248242 0.968698i \(-0.420147\pi\)
0.248242 + 0.968698i \(0.420147\pi\)
\(812\) 3.53771e12 0.285575
\(813\) 0 0
\(814\) 2.87561e10 0.00229573
\(815\) 1.24582e12 0.0989112
\(816\) 0 0
\(817\) 3.20791e13 2.51897
\(818\) 1.38201e13 1.07925
\(819\) 0 0
\(820\) −8.81550e12 −0.680902
\(821\) −7.83927e12 −0.602187 −0.301094 0.953595i \(-0.597352\pi\)
−0.301094 + 0.953595i \(0.597352\pi\)
\(822\) 0 0
\(823\) −7.11436e12 −0.540551 −0.270276 0.962783i \(-0.587115\pi\)
−0.270276 + 0.962783i \(0.587115\pi\)
\(824\) −2.53615e11 −0.0191647
\(825\) 0 0
\(826\) 2.90554e13 2.17178
\(827\) 3.05948e12 0.227443 0.113722 0.993513i \(-0.463723\pi\)
0.113722 + 0.993513i \(0.463723\pi\)
\(828\) 0 0
\(829\) −2.38849e13 −1.75642 −0.878209 0.478277i \(-0.841261\pi\)
−0.878209 + 0.478277i \(0.841261\pi\)
\(830\) −2.30322e13 −1.68455
\(831\) 0 0
\(832\) 3.74975e12 0.271298
\(833\) −1.00322e12 −0.0721929
\(834\) 0 0
\(835\) −2.84663e12 −0.202648
\(836\) 3.64291e10 0.00257941
\(837\) 0 0
\(838\) −2.10962e13 −1.47777
\(839\) 2.10384e13 1.46583 0.732916 0.680319i \(-0.238159\pi\)
0.732916 + 0.680319i \(0.238159\pi\)
\(840\) 0 0
\(841\) −1.39522e13 −0.961750
\(842\) 5.87369e12 0.402723
\(843\) 0 0
\(844\) 1.39531e12 0.0946522
\(845\) −1.33421e12 −0.0900262
\(846\) 0 0
\(847\) −2.21115e13 −1.47619
\(848\) 2.20455e13 1.46399
\(849\) 0 0
\(850\) −4.85836e11 −0.0319231
\(851\) −1.80733e13 −1.18129
\(852\) 0 0
\(853\) 1.43288e13 0.926700 0.463350 0.886175i \(-0.346647\pi\)
0.463350 + 0.886175i \(0.346647\pi\)
\(854\) −3.14382e13 −2.02254
\(855\) 0 0
\(856\) 4.48309e11 0.0285395
\(857\) 5.42361e10 0.00343459 0.00171729 0.999999i \(-0.499453\pi\)
0.00171729 + 0.999999i \(0.499453\pi\)
\(858\) 0 0
\(859\) 2.29372e13 1.43738 0.718689 0.695332i \(-0.244743\pi\)
0.718689 + 0.695332i \(0.244743\pi\)
\(860\) 2.74788e13 1.71299
\(861\) 0 0
\(862\) 3.00398e13 1.85317
\(863\) 1.78347e13 1.09451 0.547253 0.836967i \(-0.315674\pi\)
0.547253 + 0.836967i \(0.315674\pi\)
\(864\) 0 0
\(865\) 1.84602e13 1.12115
\(866\) 4.15502e13 2.51040
\(867\) 0 0
\(868\) −2.53269e13 −1.51441
\(869\) 6.31253e9 0.000375504 0
\(870\) 0 0
\(871\) 6.20055e12 0.365047
\(872\) 2.55766e10 0.00149802
\(873\) 0 0
\(874\) −4.60429e13 −2.66908
\(875\) 1.88817e13 1.08894
\(876\) 0 0
\(877\) −8.23771e11 −0.0470228 −0.0235114 0.999724i \(-0.507485\pi\)
−0.0235114 + 0.999724i \(0.507485\pi\)
\(878\) −4.45995e13 −2.53282
\(879\) 0 0
\(880\) −3.22358e10 −0.00181203
\(881\) −4.37716e12 −0.244794 −0.122397 0.992481i \(-0.539058\pi\)
−0.122397 + 0.992481i \(0.539058\pi\)
\(882\) 0 0
\(883\) −2.67063e13 −1.47840 −0.739199 0.673487i \(-0.764796\pi\)
−0.739199 + 0.673487i \(0.764796\pi\)
\(884\) 3.04964e11 0.0167963
\(885\) 0 0
\(886\) 3.55804e13 1.93981
\(887\) 1.61428e13 0.875634 0.437817 0.899064i \(-0.355752\pi\)
0.437817 + 0.899064i \(0.355752\pi\)
\(888\) 0 0
\(889\) 2.25024e13 1.20829
\(890\) −1.19732e13 −0.639671
\(891\) 0 0
\(892\) 1.75122e12 0.0926189
\(893\) 4.93426e13 2.59651
\(894\) 0 0
\(895\) −2.63258e13 −1.37144
\(896\) 8.71719e11 0.0451846
\(897\) 0 0
\(898\) 3.58948e13 1.84200
\(899\) −3.97257e12 −0.202840
\(900\) 0 0
\(901\) 1.75424e12 0.0886801
\(902\) −2.52633e10 −0.00127075
\(903\) 0 0
\(904\) 1.18208e11 0.00588696
\(905\) 3.05598e13 1.51437
\(906\) 0 0
\(907\) 1.34941e13 0.662080 0.331040 0.943617i \(-0.392601\pi\)
0.331040 + 0.943617i \(0.392601\pi\)
\(908\) 3.18937e13 1.55711
\(909\) 0 0
\(910\) 1.39799e13 0.675800
\(911\) 2.94258e13 1.41545 0.707726 0.706487i \(-0.249721\pi\)
0.707726 + 0.706487i \(0.249721\pi\)
\(912\) 0 0
\(913\) −3.28227e10 −0.00156335
\(914\) 4.89866e12 0.232177
\(915\) 0 0
\(916\) 1.39792e13 0.656076
\(917\) −1.69099e13 −0.789732
\(918\) 0 0
\(919\) 1.98741e13 0.919108 0.459554 0.888150i \(-0.348009\pi\)
0.459554 + 0.888150i \(0.348009\pi\)
\(920\) 4.32698e11 0.0199131
\(921\) 0 0
\(922\) 2.56894e13 1.17075
\(923\) −8.73409e12 −0.396105
\(924\) 0 0
\(925\) −8.74692e12 −0.392841
\(926\) 2.99643e12 0.133923
\(927\) 0 0
\(928\) −6.23108e12 −0.275802
\(929\) 2.44152e13 1.07545 0.537725 0.843120i \(-0.319284\pi\)
0.537725 + 0.843120i \(0.319284\pi\)
\(930\) 0 0
\(931\) −4.60137e13 −2.00731
\(932\) 3.98394e13 1.72958
\(933\) 0 0
\(934\) −2.85311e13 −1.22676
\(935\) −2.56511e9 −0.000109762 0
\(936\) 0 0
\(937\) 4.13081e13 1.75068 0.875341 0.483505i \(-0.160637\pi\)
0.875341 + 0.483505i \(0.160637\pi\)
\(938\) −6.49696e13 −2.74030
\(939\) 0 0
\(940\) 4.22665e13 1.76572
\(941\) −1.03027e13 −0.428350 −0.214175 0.976795i \(-0.568706\pi\)
−0.214175 + 0.976795i \(0.568706\pi\)
\(942\) 0 0
\(943\) 1.58781e13 0.653877
\(944\) −2.57247e13 −1.05433
\(945\) 0 0
\(946\) 7.87482e10 0.00319691
\(947\) −1.32108e13 −0.533771 −0.266886 0.963728i \(-0.585995\pi\)
−0.266886 + 0.963728i \(0.585995\pi\)
\(948\) 0 0
\(949\) −2.55303e12 −0.102178
\(950\) −2.22833e13 −0.887613
\(951\) 0 0
\(952\) 3.50571e10 0.00138328
\(953\) −6.34581e12 −0.249212 −0.124606 0.992206i \(-0.539767\pi\)
−0.124606 + 0.992206i \(0.539767\pi\)
\(954\) 0 0
\(955\) −2.60225e13 −1.01236
\(956\) −1.00437e13 −0.388897
\(957\) 0 0
\(958\) −5.89417e13 −2.26088
\(959\) −2.11409e13 −0.807122
\(960\) 0 0
\(961\) 2.00048e12 0.0756621
\(962\) 1.10413e13 0.415654
\(963\) 0 0
\(964\) −1.06098e13 −0.395697
\(965\) −3.44771e12 −0.127985
\(966\) 0 0
\(967\) −2.33250e13 −0.857832 −0.428916 0.903344i \(-0.641104\pi\)
−0.428916 + 0.903344i \(0.641104\pi\)
\(968\) 4.18100e11 0.0153053
\(969\) 0 0
\(970\) −2.43533e13 −0.883254
\(971\) 2.48234e13 0.896139 0.448069 0.893999i \(-0.352112\pi\)
0.448069 + 0.893999i \(0.352112\pi\)
\(972\) 0 0
\(973\) 3.61998e13 1.29479
\(974\) −4.49364e13 −1.59986
\(975\) 0 0
\(976\) 2.78343e13 0.981875
\(977\) 3.52755e12 0.123865 0.0619323 0.998080i \(-0.480274\pi\)
0.0619323 + 0.998080i \(0.480274\pi\)
\(978\) 0 0
\(979\) −1.70628e10 −0.000593646 0
\(980\) −3.94150e13 −1.36504
\(981\) 0 0
\(982\) 7.60351e13 2.60923
\(983\) −2.74635e13 −0.938133 −0.469067 0.883163i \(-0.655410\pi\)
−0.469067 + 0.883163i \(0.655410\pi\)
\(984\) 0 0
\(985\) 3.55912e12 0.120470
\(986\) −5.01209e11 −0.0168878
\(987\) 0 0
\(988\) 1.39874e13 0.467016
\(989\) −4.94936e13 −1.64500
\(990\) 0 0
\(991\) −4.47851e13 −1.47503 −0.737517 0.675329i \(-0.764002\pi\)
−0.737517 + 0.675329i \(0.764002\pi\)
\(992\) 4.46090e13 1.46258
\(993\) 0 0
\(994\) 9.15162e13 2.97344
\(995\) 4.62318e12 0.149533
\(996\) 0 0
\(997\) 2.79118e13 0.894663 0.447332 0.894368i \(-0.352374\pi\)
0.447332 + 0.894368i \(0.352374\pi\)
\(998\) −1.36837e13 −0.436632
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.10.a.g.1.7 yes 8
3.2 odd 2 inner 117.10.a.g.1.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.10.a.g.1.2 8 3.2 odd 2 inner
117.10.a.g.1.7 yes 8 1.1 even 1 trivial