Properties

Label 1160.2.a
Level $1160$
Weight $2$
Character orbit 1160.a
Rep. character $\chi_{1160}(1,\cdot)$
Character field $\Q$
Dimension $28$
Newform subspaces $10$
Sturm bound $360$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1160 = 2^{3} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1160.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 10 \)
Sturm bound: \(360\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(3\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1160))\).

Total New Old
Modular forms 188 28 160
Cusp forms 173 28 145
Eisenstein series 15 0 15

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)\(29\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(21\)\(2\)\(19\)\(20\)\(2\)\(18\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(-\)\(-\)\(26\)\(5\)\(21\)\(24\)\(5\)\(19\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(+\)\(-\)\(26\)\(5\)\(21\)\(24\)\(5\)\(19\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(+\)\(21\)\(1\)\(20\)\(19\)\(1\)\(18\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(+\)\(-\)\(26\)\(4\)\(22\)\(24\)\(4\)\(20\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(+\)\(21\)\(3\)\(18\)\(19\)\(3\)\(16\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(+\)\(21\)\(3\)\(18\)\(19\)\(3\)\(16\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(-\)\(-\)\(26\)\(5\)\(21\)\(24\)\(5\)\(19\)\(2\)\(0\)\(2\)
Plus space\(+\)\(84\)\(9\)\(75\)\(77\)\(9\)\(68\)\(7\)\(0\)\(7\)
Minus space\(-\)\(104\)\(19\)\(85\)\(96\)\(19\)\(77\)\(8\)\(0\)\(8\)

Trace form

\( 28 q + 8 q^{7} + 40 q^{9} - 8 q^{11} + 8 q^{13} + 4 q^{17} - 8 q^{19} - 8 q^{21} + 28 q^{25} + 32 q^{31} + 8 q^{33} - 4 q^{35} + 4 q^{37} + 8 q^{39} + 16 q^{41} + 32 q^{43} + 24 q^{47} + 48 q^{49} - 8 q^{51}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1160))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5 29
1160.2.a.a 1160.a 1.a $1$ $9.263$ \(\Q\) None 1160.2.a.a \(0\) \(-2\) \(-1\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{3}-q^{5}+q^{9}+4q^{11}-2q^{13}+\cdots\)
1160.2.a.b 1160.a 1.a $1$ $9.263$ \(\Q\) None 1160.2.a.b \(0\) \(0\) \(1\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{5}-3q^{9}-2q^{13}-6q^{17}-8q^{19}+\cdots\)
1160.2.a.c 1160.a 1.a $1$ $9.263$ \(\Q\) None 1160.2.a.c \(0\) \(2\) \(-1\) \(-4\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{3}-q^{5}-4q^{7}+q^{9}-2q^{13}+\cdots\)
1160.2.a.d 1160.a 1.a $1$ $9.263$ \(\Q\) None 1160.2.a.d \(0\) \(2\) \(-1\) \(4\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{3}-q^{5}+4q^{7}+q^{9}+6q^{13}+\cdots\)
1160.2.a.e 1160.a 1.a $3$ $9.263$ 3.3.148.1 None 1160.2.a.e \(0\) \(-2\) \(-3\) \(2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{3}-q^{5}+(1-\beta _{2})q^{7}+\cdots\)
1160.2.a.f 1160.a 1.a $3$ $9.263$ 3.3.148.1 None 1160.2.a.f \(0\) \(-2\) \(3\) \(-4\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{3}+q^{5}+(-1-\beta _{1})q^{7}+\cdots\)
1160.2.a.g 1160.a 1.a $3$ $9.263$ 3.3.229.1 None 1160.2.a.g \(0\) \(1\) \(-3\) \(-3\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{3}-q^{5}+(-1+\beta _{1})q^{7}+(\beta _{1}+\cdots)q^{9}+\cdots\)
1160.2.a.h 1160.a 1.a $5$ $9.263$ 5.5.3145252.1 None 1160.2.a.h \(0\) \(-1\) \(-5\) \(7\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{3}q^{3}-q^{5}+(1-\beta _{2})q^{7}+(2-\beta _{2}+\cdots)q^{9}+\cdots\)
1160.2.a.i 1160.a 1.a $5$ $9.263$ 5.5.6083172.1 None 1160.2.a.i \(0\) \(-1\) \(5\) \(-1\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}+q^{5}+(-\beta _{2}+\beta _{3})q^{7}+(2+\cdots)q^{9}+\cdots\)
1160.2.a.j 1160.a 1.a $5$ $9.263$ 5.5.580484.1 None 1160.2.a.j \(0\) \(3\) \(5\) \(7\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{3})q^{3}+q^{5}+(1-\beta _{2}+\beta _{3})q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1160))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(1160)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(29))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(58))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(116))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(145))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(232))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(290))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(580))\)\(^{\oplus 2}\)