Properties

Label 1152.2.w.b.1007.3
Level $1152$
Weight $2$
Character 1152.1007
Analytic conductor $9.199$
Analytic rank $0$
Dimension $32$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1152.w (of order \(8\), degree \(4\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(9.19876631285\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{8})\)
Twist minimal: no (minimal twist has level 288)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 1007.3
Character \(\chi\) \(=\) 1152.1007
Dual form 1152.2.w.b.143.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.739921 - 1.78633i) q^{5} +(-0.385417 - 0.385417i) q^{7} +O(q^{10})\) \(q+(-0.739921 - 1.78633i) q^{5} +(-0.385417 - 0.385417i) q^{7} +(2.36398 + 5.70716i) q^{11} +(-2.30916 - 0.956485i) q^{13} +5.05518 q^{17} +(1.27305 - 3.07341i) q^{19} +(2.28291 + 2.28291i) q^{23} +(0.892052 - 0.892052i) q^{25} +(0.735171 + 0.304518i) q^{29} -3.40740i q^{31} +(-0.403302 + 0.973658i) q^{35} +(9.56094 - 3.96027i) q^{37} +(5.27801 - 5.27801i) q^{41} +(-2.53597 + 1.05043i) q^{43} -6.85609i q^{47} -6.70291i q^{49} +(-7.45793 + 3.08917i) q^{53} +(8.44569 - 8.44569i) q^{55} +(-6.14066 + 2.54355i) q^{59} +(2.67989 - 6.46983i) q^{61} +4.83264i q^{65} +(-10.2890 - 4.26184i) q^{67} +(6.37064 - 6.37064i) q^{71} +(9.03739 + 9.03739i) q^{73} +(1.28852 - 3.11075i) q^{77} -1.22095 q^{79} +(14.8416 + 6.14761i) q^{83} +(-3.74043 - 9.03021i) q^{85} +(4.97492 + 4.97492i) q^{89} +(0.521343 + 1.25863i) q^{91} -6.43208 q^{95} +1.23680 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + O(q^{10}) \) \( 32 q + 8 q^{11} - 16 q^{29} - 24 q^{35} - 16 q^{53} + 32 q^{55} - 32 q^{59} + 32 q^{61} + 16 q^{67} - 16 q^{71} - 16 q^{77} + 32 q^{79} + 40 q^{83} + 48 q^{91} + 80 q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1152\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(641\) \(901\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{7}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.739921 1.78633i −0.330903 0.798870i −0.998521 0.0543661i \(-0.982686\pi\)
0.667618 0.744504i \(-0.267314\pi\)
\(6\) 0 0
\(7\) −0.385417 0.385417i −0.145674 0.145674i 0.630509 0.776182i \(-0.282846\pi\)
−0.776182 + 0.630509i \(0.782846\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.36398 + 5.70716i 0.712767 + 1.72077i 0.692968 + 0.720969i \(0.256303\pi\)
0.0197998 + 0.999804i \(0.493697\pi\)
\(12\) 0 0
\(13\) −2.30916 0.956485i −0.640446 0.265281i 0.0387383 0.999249i \(-0.487666\pi\)
−0.679184 + 0.733968i \(0.737666\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.05518 1.22606 0.613031 0.790059i \(-0.289950\pi\)
0.613031 + 0.790059i \(0.289950\pi\)
\(18\) 0 0
\(19\) 1.27305 3.07341i 0.292057 0.705089i −0.707942 0.706271i \(-0.750376\pi\)
0.999999 + 0.00118164i \(0.000376129\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.28291 + 2.28291i 0.476020 + 0.476020i 0.903856 0.427837i \(-0.140724\pi\)
−0.427837 + 0.903856i \(0.640724\pi\)
\(24\) 0 0
\(25\) 0.892052 0.892052i 0.178410 0.178410i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.735171 + 0.304518i 0.136518 + 0.0565475i 0.449896 0.893081i \(-0.351461\pi\)
−0.313379 + 0.949628i \(0.601461\pi\)
\(30\) 0 0
\(31\) 3.40740i 0.611988i −0.952033 0.305994i \(-0.901011\pi\)
0.952033 0.305994i \(-0.0989887\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.403302 + 0.973658i −0.0681705 + 0.164578i
\(36\) 0 0
\(37\) 9.56094 3.96027i 1.57181 0.651065i 0.584720 0.811235i \(-0.301204\pi\)
0.987089 + 0.160170i \(0.0512043\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.27801 5.27801i 0.824287 0.824287i −0.162432 0.986720i \(-0.551934\pi\)
0.986720 + 0.162432i \(0.0519340\pi\)
\(42\) 0 0
\(43\) −2.53597 + 1.05043i −0.386732 + 0.160190i −0.567574 0.823323i \(-0.692118\pi\)
0.180842 + 0.983512i \(0.442118\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.85609i 1.00006i −0.866007 0.500031i \(-0.833322\pi\)
0.866007 0.500031i \(-0.166678\pi\)
\(48\) 0 0
\(49\) 6.70291i 0.957558i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −7.45793 + 3.08917i −1.02442 + 0.424331i −0.830697 0.556725i \(-0.812058\pi\)
−0.193728 + 0.981055i \(0.562058\pi\)
\(54\) 0 0
\(55\) 8.44569 8.44569i 1.13882 1.13882i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −6.14066 + 2.54355i −0.799446 + 0.331142i −0.744735 0.667361i \(-0.767424\pi\)
−0.0547117 + 0.998502i \(0.517424\pi\)
\(60\) 0 0
\(61\) 2.67989 6.46983i 0.343125 0.828376i −0.654272 0.756260i \(-0.727025\pi\)
0.997396 0.0721165i \(-0.0229753\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.83264i 0.599415i
\(66\) 0 0
\(67\) −10.2890 4.26184i −1.25700 0.520666i −0.348012 0.937490i \(-0.613143\pi\)
−0.908987 + 0.416824i \(0.863143\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6.37064 6.37064i 0.756056 0.756056i −0.219546 0.975602i \(-0.570458\pi\)
0.975602 + 0.219546i \(0.0704577\pi\)
\(72\) 0 0
\(73\) 9.03739 + 9.03739i 1.05775 + 1.05775i 0.998227 + 0.0595198i \(0.0189570\pi\)
0.0595198 + 0.998227i \(0.481043\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.28852 3.11075i 0.146840 0.354503i
\(78\) 0 0
\(79\) −1.22095 −0.137367 −0.0686837 0.997638i \(-0.521880\pi\)
−0.0686837 + 0.997638i \(0.521880\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 14.8416 + 6.14761i 1.62908 + 0.674788i 0.995129 0.0985841i \(-0.0314314\pi\)
0.633953 + 0.773372i \(0.281431\pi\)
\(84\) 0 0
\(85\) −3.74043 9.03021i −0.405707 0.979464i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.97492 + 4.97492i 0.527340 + 0.527340i 0.919778 0.392438i \(-0.128368\pi\)
−0.392438 + 0.919778i \(0.628368\pi\)
\(90\) 0 0
\(91\) 0.521343 + 1.25863i 0.0546516 + 0.131941i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −6.43208 −0.659917
\(96\) 0 0
\(97\) 1.23680 0.125579 0.0627893 0.998027i \(-0.480000\pi\)
0.0627893 + 0.998027i \(0.480000\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 5.61006 + 13.5439i 0.558222 + 1.34767i 0.911172 + 0.412025i \(0.135179\pi\)
−0.352950 + 0.935642i \(0.614821\pi\)
\(102\) 0 0
\(103\) 13.0799 + 13.0799i 1.28880 + 1.28880i 0.935518 + 0.353279i \(0.114933\pi\)
0.353279 + 0.935518i \(0.385067\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.16330 + 2.80844i 0.112460 + 0.271502i 0.970082 0.242779i \(-0.0780588\pi\)
−0.857622 + 0.514281i \(0.828059\pi\)
\(108\) 0 0
\(109\) −13.5958 5.63158i −1.30225 0.539408i −0.379634 0.925137i \(-0.623950\pi\)
−0.922612 + 0.385729i \(0.873950\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 13.6829 1.28718 0.643591 0.765369i \(-0.277444\pi\)
0.643591 + 0.765369i \(0.277444\pi\)
\(114\) 0 0
\(115\) 2.38885 5.76720i 0.222761 0.537794i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.94835 1.94835i −0.178605 0.178605i
\(120\) 0 0
\(121\) −19.2051 + 19.2051i −1.74591 + 1.74591i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −11.1852 4.63305i −1.00043 0.414393i
\(126\) 0 0
\(127\) 8.19707i 0.727372i 0.931522 + 0.363686i \(0.118482\pi\)
−0.931522 + 0.363686i \(0.881518\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1.61003 3.88695i 0.140669 0.339604i −0.837807 0.545967i \(-0.816163\pi\)
0.978476 + 0.206362i \(0.0661626\pi\)
\(132\) 0 0
\(133\) −1.67520 + 0.693890i −0.145258 + 0.0601679i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −6.79006 + 6.79006i −0.580114 + 0.580114i −0.934934 0.354821i \(-0.884542\pi\)
0.354821 + 0.934934i \(0.384542\pi\)
\(138\) 0 0
\(139\) 3.08589 1.27822i 0.261742 0.108417i −0.247954 0.968772i \(-0.579758\pi\)
0.509695 + 0.860355i \(0.329758\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 15.4399i 1.29115i
\(144\) 0 0
\(145\) 1.53857i 0.127772i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −8.40712 + 3.48234i −0.688738 + 0.285285i −0.699474 0.714658i \(-0.746582\pi\)
0.0107364 + 0.999942i \(0.496582\pi\)
\(150\) 0 0
\(151\) 13.7649 13.7649i 1.12017 1.12017i 0.128459 0.991715i \(-0.458997\pi\)
0.991715 0.128459i \(-0.0410032\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −6.08674 + 2.52121i −0.488899 + 0.202508i
\(156\) 0 0
\(157\) 1.16741 2.81838i 0.0931694 0.224931i −0.870424 0.492303i \(-0.836155\pi\)
0.963593 + 0.267372i \(0.0861553\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.75974i 0.138687i
\(162\) 0 0
\(163\) −11.1679 4.62591i −0.874740 0.362329i −0.100285 0.994959i \(-0.531976\pi\)
−0.774455 + 0.632630i \(0.781976\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2.51551 + 2.51551i −0.194656 + 0.194656i −0.797704 0.603049i \(-0.793952\pi\)
0.603049 + 0.797704i \(0.293952\pi\)
\(168\) 0 0
\(169\) −4.77503 4.77503i −0.367310 0.367310i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0.737563 1.78063i 0.0560759 0.135379i −0.893359 0.449344i \(-0.851658\pi\)
0.949434 + 0.313965i \(0.101658\pi\)
\(174\) 0 0
\(175\) −0.687623 −0.0519794
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −9.47042 3.92278i −0.707852 0.293202i −0.000436715 1.00000i \(-0.500139\pi\)
−0.707416 + 0.706798i \(0.750139\pi\)
\(180\) 0 0
\(181\) 9.91984 + 23.9486i 0.737336 + 1.78009i 0.616410 + 0.787426i \(0.288587\pi\)
0.120927 + 0.992661i \(0.461413\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −14.1487 14.1487i −1.04023 1.04023i
\(186\) 0 0
\(187\) 11.9504 + 28.8507i 0.873897 + 2.10977i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3.03200 0.219388 0.109694 0.993965i \(-0.465013\pi\)
0.109694 + 0.993965i \(0.465013\pi\)
\(192\) 0 0
\(193\) 4.75813 0.342498 0.171249 0.985228i \(-0.445220\pi\)
0.171249 + 0.985228i \(0.445220\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −3.20309 7.73295i −0.228211 0.550950i 0.767749 0.640751i \(-0.221377\pi\)
−0.995960 + 0.0898012i \(0.971377\pi\)
\(198\) 0 0
\(199\) −15.9060 15.9060i −1.12755 1.12755i −0.990575 0.136973i \(-0.956263\pi\)
−0.136973 0.990575i \(-0.543737\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −0.165981 0.400713i −0.0116496 0.0281245i
\(204\) 0 0
\(205\) −13.3336 5.52295i −0.931257 0.385739i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 20.5499 1.42147
\(210\) 0 0
\(211\) −2.38241 + 5.75165i −0.164012 + 0.395960i −0.984423 0.175814i \(-0.943744\pi\)
0.820412 + 0.571773i \(0.193744\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 3.75284 + 3.75284i 0.255941 + 0.255941i
\(216\) 0 0
\(217\) −1.31327 + 1.31327i −0.0891506 + 0.0891506i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −11.6732 4.83521i −0.785226 0.325251i
\(222\) 0 0
\(223\) 24.2829i 1.62611i 0.582190 + 0.813053i \(0.302196\pi\)
−0.582190 + 0.813053i \(0.697804\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −3.57334 + 8.62682i −0.237171 + 0.572582i −0.996988 0.0775552i \(-0.975289\pi\)
0.759817 + 0.650137i \(0.225289\pi\)
\(228\) 0 0
\(229\) 14.4317 5.97779i 0.953672 0.395024i 0.149062 0.988828i \(-0.452375\pi\)
0.804610 + 0.593804i \(0.202375\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −6.50138 + 6.50138i −0.425920 + 0.425920i −0.887236 0.461316i \(-0.847377\pi\)
0.461316 + 0.887236i \(0.347377\pi\)
\(234\) 0 0
\(235\) −12.2472 + 5.07296i −0.798920 + 0.330923i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 19.9787i 1.29232i −0.763203 0.646159i \(-0.776374\pi\)
0.763203 0.646159i \(-0.223626\pi\)
\(240\) 0 0
\(241\) 0.606349i 0.0390584i 0.999809 + 0.0195292i \(0.00621673\pi\)
−0.999809 + 0.0195292i \(0.993783\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −11.9736 + 4.95962i −0.764964 + 0.316859i
\(246\) 0 0
\(247\) −5.87935 + 5.87935i −0.374094 + 0.374094i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −14.5988 + 6.04703i −0.921470 + 0.381685i −0.792436 0.609955i \(-0.791187\pi\)
−0.129034 + 0.991640i \(0.541187\pi\)
\(252\) 0 0
\(253\) −7.63217 + 18.4257i −0.479830 + 1.15841i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 10.5962i 0.660974i −0.943811 0.330487i \(-0.892787\pi\)
0.943811 0.330487i \(-0.107213\pi\)
\(258\) 0 0
\(259\) −5.21130 2.15859i −0.323815 0.134128i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −19.2991 + 19.2991i −1.19004 + 1.19004i −0.212979 + 0.977057i \(0.568317\pi\)
−0.977057 + 0.212979i \(0.931683\pi\)
\(264\) 0 0
\(265\) 11.0366 + 11.0366i 0.677970 + 0.677970i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 4.57782 11.0518i 0.279114 0.673842i −0.720697 0.693250i \(-0.756178\pi\)
0.999812 + 0.0194081i \(0.00617818\pi\)
\(270\) 0 0
\(271\) −29.0069 −1.76204 −0.881022 0.473075i \(-0.843144\pi\)
−0.881022 + 0.473075i \(0.843144\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 7.19988 + 2.98229i 0.434169 + 0.179839i
\(276\) 0 0
\(277\) 3.29625 + 7.95785i 0.198053 + 0.478141i 0.991438 0.130578i \(-0.0416834\pi\)
−0.793385 + 0.608720i \(0.791683\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −6.61069 6.61069i −0.394361 0.394361i 0.481878 0.876238i \(-0.339955\pi\)
−0.876238 + 0.481878i \(0.839955\pi\)
\(282\) 0 0
\(283\) 0.300555 + 0.725605i 0.0178662 + 0.0431327i 0.932561 0.361013i \(-0.117569\pi\)
−0.914695 + 0.404146i \(0.867569\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −4.06847 −0.240154
\(288\) 0 0
\(289\) 8.55486 0.503227
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0.400806 + 0.967632i 0.0234154 + 0.0565297i 0.935155 0.354239i \(-0.115260\pi\)
−0.911739 + 0.410769i \(0.865260\pi\)
\(294\) 0 0
\(295\) 9.08721 + 9.08721i 0.529078 + 0.529078i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −3.08803 7.45517i −0.178586 0.431144i
\(300\) 0 0
\(301\) 1.38226 + 0.572551i 0.0796721 + 0.0330013i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −13.5401 −0.775306
\(306\) 0 0
\(307\) 3.22266 7.78018i 0.183927 0.444038i −0.804843 0.593488i \(-0.797750\pi\)
0.988769 + 0.149450i \(0.0477503\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −7.17660 7.17660i −0.406948 0.406948i 0.473725 0.880673i \(-0.342909\pi\)
−0.880673 + 0.473725i \(0.842909\pi\)
\(312\) 0 0
\(313\) 0.108611 0.108611i 0.00613907 0.00613907i −0.704031 0.710170i \(-0.748618\pi\)
0.710170 + 0.704031i \(0.248618\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9.89983 + 4.10065i 0.556030 + 0.230315i 0.642961 0.765899i \(-0.277706\pi\)
−0.0869307 + 0.996214i \(0.527706\pi\)
\(318\) 0 0
\(319\) 4.91561i 0.275221i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 6.43549 15.5367i 0.358080 0.864483i
\(324\) 0 0
\(325\) −2.91312 + 1.20666i −0.161591 + 0.0669332i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −2.64245 + 2.64245i −0.145683 + 0.145683i
\(330\) 0 0
\(331\) 14.7254 6.09946i 0.809381 0.335257i 0.0606740 0.998158i \(-0.480675\pi\)
0.748707 + 0.662901i \(0.230675\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 21.5329i 1.17647i
\(336\) 0 0
\(337\) 15.5033i 0.844517i −0.906475 0.422259i \(-0.861237\pi\)
0.906475 0.422259i \(-0.138763\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 19.4466 8.05504i 1.05309 0.436205i
\(342\) 0 0
\(343\) −5.28133 + 5.28133i −0.285165 + 0.285165i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −0.714667 + 0.296025i −0.0383654 + 0.0158914i −0.401784 0.915735i \(-0.631610\pi\)
0.363418 + 0.931626i \(0.381610\pi\)
\(348\) 0 0
\(349\) −3.21246 + 7.75558i −0.171959 + 0.415146i −0.986239 0.165326i \(-0.947132\pi\)
0.814280 + 0.580473i \(0.197132\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 11.9668i 0.636927i 0.947935 + 0.318463i \(0.103167\pi\)
−0.947935 + 0.318463i \(0.896833\pi\)
\(354\) 0 0
\(355\) −16.0938 6.66628i −0.854171 0.353809i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 10.0179 10.0179i 0.528723 0.528723i −0.391469 0.920191i \(-0.628033\pi\)
0.920191 + 0.391469i \(0.128033\pi\)
\(360\) 0 0
\(361\) 5.60982 + 5.60982i 0.295254 + 0.295254i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 9.45679 22.8307i 0.494991 1.19501i
\(366\) 0 0
\(367\) −26.0524 −1.35992 −0.679961 0.733248i \(-0.738004\pi\)
−0.679961 + 0.733248i \(0.738004\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 4.06503 + 1.68379i 0.211046 + 0.0874180i
\(372\) 0 0
\(373\) 1.11398 + 2.68939i 0.0576797 + 0.139251i 0.950092 0.311970i \(-0.100989\pi\)
−0.892412 + 0.451221i \(0.850989\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −1.40636 1.40636i −0.0724312 0.0724312i
\(378\) 0 0
\(379\) 2.87476 + 6.94029i 0.147667 + 0.356499i 0.980354 0.197244i \(-0.0631991\pi\)
−0.832688 + 0.553743i \(0.813199\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −18.2355 −0.931792 −0.465896 0.884839i \(-0.654268\pi\)
−0.465896 + 0.884839i \(0.654268\pi\)
\(384\) 0 0
\(385\) −6.51022 −0.331791
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 9.18501 + 22.1746i 0.465699 + 1.12430i 0.966023 + 0.258458i \(0.0832143\pi\)
−0.500324 + 0.865838i \(0.666786\pi\)
\(390\) 0 0
\(391\) 11.5405 + 11.5405i 0.583629 + 0.583629i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0.903405 + 2.18101i 0.0454552 + 0.109739i
\(396\) 0 0
\(397\) 3.77144 + 1.56218i 0.189283 + 0.0784037i 0.475312 0.879817i \(-0.342335\pi\)
−0.286029 + 0.958221i \(0.592335\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −32.5110 −1.62352 −0.811761 0.583990i \(-0.801491\pi\)
−0.811761 + 0.583990i \(0.801491\pi\)
\(402\) 0 0
\(403\) −3.25913 + 7.86824i −0.162349 + 0.391945i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 45.2038 + 45.2038i 2.24067 + 2.24067i
\(408\) 0 0
\(409\) −15.0850 + 15.0850i −0.745903 + 0.745903i −0.973707 0.227804i \(-0.926845\pi\)
0.227804 + 0.973707i \(0.426845\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 3.34704 + 1.38639i 0.164697 + 0.0682197i
\(414\) 0 0
\(415\) 31.0608i 1.52471i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 6.41529 15.4879i 0.313407 0.756632i −0.686167 0.727444i \(-0.740708\pi\)
0.999574 0.0291878i \(-0.00929208\pi\)
\(420\) 0 0
\(421\) −13.8675 + 5.74412i −0.675863 + 0.279951i −0.694096 0.719882i \(-0.744196\pi\)
0.0182335 + 0.999834i \(0.494196\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 4.50948 4.50948i 0.218742 0.218742i
\(426\) 0 0
\(427\) −3.52645 + 1.46070i −0.170657 + 0.0706884i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 39.1679i 1.88665i 0.331870 + 0.943325i \(0.392320\pi\)
−0.331870 + 0.943325i \(0.607680\pi\)
\(432\) 0 0
\(433\) 20.6897i 0.994283i −0.867669 0.497142i \(-0.834383\pi\)
0.867669 0.497142i \(-0.165617\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 9.92258 4.11007i 0.474661 0.196611i
\(438\) 0 0
\(439\) 7.49686 7.49686i 0.357805 0.357805i −0.505198 0.863003i \(-0.668581\pi\)
0.863003 + 0.505198i \(0.168581\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5.58792 + 2.31459i −0.265490 + 0.109970i −0.511458 0.859308i \(-0.670894\pi\)
0.245968 + 0.969278i \(0.420894\pi\)
\(444\) 0 0
\(445\) 5.20579 12.5679i 0.246778 0.595775i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 9.22927i 0.435556i −0.975998 0.217778i \(-0.930119\pi\)
0.975998 0.217778i \(-0.0698809\pi\)
\(450\) 0 0
\(451\) 42.5996 + 17.6453i 2.00594 + 0.830886i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1.86258 1.86258i 0.0873190 0.0873190i
\(456\) 0 0
\(457\) −15.0540 15.0540i −0.704197 0.704197i 0.261112 0.965309i \(-0.415911\pi\)
−0.965309 + 0.261112i \(0.915911\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −2.11682 + 5.11046i −0.0985902 + 0.238018i −0.965478 0.260486i \(-0.916117\pi\)
0.866887 + 0.498504i \(0.166117\pi\)
\(462\) 0 0
\(463\) 30.2844 1.40743 0.703717 0.710481i \(-0.251522\pi\)
0.703717 + 0.710481i \(0.251522\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −12.9725 5.37338i −0.600295 0.248650i 0.0617775 0.998090i \(-0.480323\pi\)
−0.662073 + 0.749439i \(0.730323\pi\)
\(468\) 0 0
\(469\) 2.32296 + 5.60813i 0.107264 + 0.258959i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −11.9900 11.9900i −0.551300 0.551300i
\(474\) 0 0
\(475\) −1.60602 3.87727i −0.0736891 0.177901i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 2.51607 0.114962 0.0574810 0.998347i \(-0.481693\pi\)
0.0574810 + 0.998347i \(0.481693\pi\)
\(480\) 0 0
\(481\) −25.8657 −1.17937
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −0.915138 2.20934i −0.0415543 0.100321i
\(486\) 0 0
\(487\) −1.66386 1.66386i −0.0753965 0.0753965i 0.668403 0.743799i \(-0.266978\pi\)
−0.743799 + 0.668403i \(0.766978\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −12.2708 29.6244i −0.553775 1.33693i −0.914624 0.404306i \(-0.867513\pi\)
0.360849 0.932624i \(-0.382487\pi\)
\(492\) 0 0
\(493\) 3.71642 + 1.53939i 0.167379 + 0.0693307i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −4.91070 −0.220275
\(498\) 0 0
\(499\) 13.7034 33.0830i 0.613450 1.48100i −0.245736 0.969337i \(-0.579029\pi\)
0.859186 0.511663i \(-0.170971\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −23.6161 23.6161i −1.05299 1.05299i −0.998515 0.0544742i \(-0.982652\pi\)
−0.0544742 0.998515i \(-0.517348\pi\)
\(504\) 0 0
\(505\) 20.0428 20.0428i 0.891894 0.891894i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 33.8424 + 14.0180i 1.50004 + 0.621336i 0.973474 0.228798i \(-0.0734797\pi\)
0.526565 + 0.850135i \(0.323480\pi\)
\(510\) 0 0
\(511\) 6.96632i 0.308172i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 13.6868 33.0430i 0.603115 1.45605i
\(516\) 0 0
\(517\) 39.1288 16.2077i 1.72088 0.712812i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1.30745 1.30745i 0.0572804 0.0572804i −0.677886 0.735167i \(-0.737104\pi\)
0.735167 + 0.677886i \(0.237104\pi\)
\(522\) 0 0
\(523\) 21.7896 9.02554i 0.952792 0.394660i 0.148513 0.988911i \(-0.452551\pi\)
0.804280 + 0.594251i \(0.202551\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 17.2250i 0.750335i
\(528\) 0 0
\(529\) 12.5766i 0.546811i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −17.2361 + 7.13943i −0.746579 + 0.309243i
\(534\) 0 0
\(535\) 4.15605 4.15605i 0.179682 0.179682i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 38.2546 15.8456i 1.64774 0.682516i
\(540\) 0 0
\(541\) −3.04512 + 7.35157i −0.130920 + 0.316069i −0.975723 0.219009i \(-0.929718\pi\)
0.844803 + 0.535078i \(0.179718\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 28.4536i 1.21882i
\(546\) 0 0
\(547\) −5.38090 2.22884i −0.230071 0.0952984i 0.264670 0.964339i \(-0.414737\pi\)
−0.494741 + 0.869041i \(0.664737\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1.87182 1.87182i 0.0797421 0.0797421i
\(552\) 0 0
\(553\) 0.470574 + 0.470574i 0.0200108 + 0.0200108i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −8.63425 + 20.8449i −0.365845 + 0.883228i 0.628576 + 0.777748i \(0.283638\pi\)
−0.994421 + 0.105480i \(0.966362\pi\)
\(558\) 0 0
\(559\) 6.86069 0.290176
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −17.1318 7.09624i −0.722021 0.299071i −0.00875227 0.999962i \(-0.502786\pi\)
−0.713268 + 0.700891i \(0.752786\pi\)
\(564\) 0 0
\(565\) −10.1243 24.4422i −0.425932 1.02829i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 15.5020 + 15.5020i 0.649877 + 0.649877i 0.952963 0.303086i \(-0.0980169\pi\)
−0.303086 + 0.952963i \(0.598017\pi\)
\(570\) 0 0
\(571\) −11.3574 27.4193i −0.475294 1.14746i −0.961793 0.273779i \(-0.911726\pi\)
0.486499 0.873681i \(-0.338274\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 4.07295 0.169854
\(576\) 0 0
\(577\) 19.6105 0.816396 0.408198 0.912893i \(-0.366157\pi\)
0.408198 + 0.912893i \(0.366157\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −3.35082 8.08960i −0.139016 0.335613i
\(582\) 0 0
\(583\) −35.2608 35.2608i −1.46035 1.46035i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 6.56890 + 15.8587i 0.271128 + 0.654560i 0.999532 0.0305874i \(-0.00973779\pi\)
−0.728404 + 0.685147i \(0.759738\pi\)
\(588\) 0 0
\(589\) −10.4724 4.33779i −0.431506 0.178736i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0.287201 0.0117939 0.00589697 0.999983i \(-0.498123\pi\)
0.00589697 + 0.999983i \(0.498123\pi\)
\(594\) 0 0
\(595\) −2.03877 + 4.92202i −0.0835813 + 0.201783i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 12.5596 + 12.5596i 0.513170 + 0.513170i 0.915496 0.402326i \(-0.131798\pi\)
−0.402326 + 0.915496i \(0.631798\pi\)
\(600\) 0 0
\(601\) 23.9708 23.9708i 0.977791 0.977791i −0.0219673 0.999759i \(-0.506993\pi\)
0.999759 + 0.0219673i \(0.00699298\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 48.5168 + 20.0963i 1.97249 + 0.817031i
\(606\) 0 0
\(607\) 27.9757i 1.13550i 0.823202 + 0.567749i \(0.192185\pi\)
−0.823202 + 0.567749i \(0.807815\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −6.55774 + 15.8318i −0.265298 + 0.640486i
\(612\) 0 0
\(613\) −30.2175 + 12.5165i −1.22047 + 0.505537i −0.897560 0.440892i \(-0.854662\pi\)
−0.322913 + 0.946429i \(0.604662\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −23.4695 + 23.4695i −0.944848 + 0.944848i −0.998557 0.0537086i \(-0.982896\pi\)
0.0537086 + 0.998557i \(0.482896\pi\)
\(618\) 0 0
\(619\) 16.2802 6.74349i 0.654357 0.271044i −0.0307046 0.999529i \(-0.509775\pi\)
0.685062 + 0.728485i \(0.259775\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 3.83483i 0.153639i
\(624\) 0 0
\(625\) 17.1007i 0.684029i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 48.3323 20.0199i 1.92714 0.798246i
\(630\) 0 0
\(631\) −18.7206 + 18.7206i −0.745256 + 0.745256i −0.973584 0.228328i \(-0.926674\pi\)
0.228328 + 0.973584i \(0.426674\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 14.6426 6.06518i 0.581076 0.240689i
\(636\) 0 0
\(637\) −6.41123 + 15.4781i −0.254022 + 0.613264i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 39.5671i 1.56281i 0.624026 + 0.781404i \(0.285496\pi\)
−0.624026 + 0.781404i \(0.714504\pi\)
\(642\) 0 0
\(643\) 32.9323 + 13.6410i 1.29872 + 0.537949i 0.921573 0.388204i \(-0.126904\pi\)
0.377149 + 0.926153i \(0.376904\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −15.1226 + 15.1226i −0.594532 + 0.594532i −0.938852 0.344320i \(-0.888109\pi\)
0.344320 + 0.938852i \(0.388109\pi\)
\(648\) 0 0
\(649\) −29.0328 29.0328i −1.13964 1.13964i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −5.76633 + 13.9212i −0.225654 + 0.544777i −0.995640 0.0932843i \(-0.970263\pi\)
0.769985 + 0.638061i \(0.220263\pi\)
\(654\) 0 0
\(655\) −8.13465 −0.317847
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 21.9719 + 9.10108i 0.855905 + 0.354528i 0.767105 0.641522i \(-0.221697\pi\)
0.0888005 + 0.996049i \(0.471697\pi\)
\(660\) 0 0
\(661\) 6.04221 + 14.5872i 0.235015 + 0.567376i 0.996754 0.0805079i \(-0.0256542\pi\)
−0.761739 + 0.647884i \(0.775654\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.47903 + 2.47903i 0.0961326 + 0.0961326i
\(666\) 0 0
\(667\) 0.983142 + 2.37351i 0.0380674 + 0.0919029i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 43.2595 1.67002
\(672\) 0 0
\(673\) 23.2501 0.896225 0.448113 0.893977i \(-0.352096\pi\)
0.448113 + 0.893977i \(0.352096\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −8.28073 19.9914i −0.318254 0.768333i −0.999347 0.0361363i \(-0.988495\pi\)
0.681093 0.732197i \(-0.261505\pi\)
\(678\) 0 0
\(679\) −0.476685 0.476685i −0.0182935 0.0182935i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 6.09927 + 14.7249i 0.233382 + 0.563434i 0.996571 0.0827411i \(-0.0263674\pi\)
−0.763189 + 0.646175i \(0.776367\pi\)
\(684\) 0 0
\(685\) 17.1534 + 7.10516i 0.655397 + 0.271474i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 20.1763 0.768655
\(690\) 0 0
\(691\) 6.28104 15.1638i 0.238942 0.576857i −0.758232 0.651985i \(-0.773937\pi\)
0.997174 + 0.0751281i \(0.0239366\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4.56663 4.56663i −0.173222 0.173222i
\(696\) 0 0
\(697\) 26.6813 26.6813i 1.01063 1.01063i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −24.6746 10.2205i −0.931946 0.386025i −0.135529 0.990773i \(-0.543274\pi\)
−0.796416 + 0.604749i \(0.793274\pi\)
\(702\) 0 0
\(703\) 34.4263i 1.29841i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 3.05783 7.38225i 0.115001 0.277638i
\(708\) 0 0
\(709\) −11.4821 + 4.75606i −0.431221 + 0.178617i −0.587727 0.809060i \(-0.699977\pi\)
0.156506 + 0.987677i \(0.449977\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 7.77879 7.77879i 0.291318 0.291318i
\(714\) 0 0
\(715\) −27.5806 + 11.4243i −1.03146 + 0.427243i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 24.1182i 0.899455i 0.893166 + 0.449728i \(0.148479\pi\)
−0.893166 + 0.449728i \(0.851521\pi\)
\(720\) 0 0
\(721\) 10.0824i 0.375488i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0.927456 0.384165i 0.0344449 0.0142675i
\(726\) 0 0
\(727\) −23.8328 + 23.8328i −0.883909 + 0.883909i −0.993929 0.110020i \(-0.964908\pi\)
0.110020 + 0.993929i \(0.464908\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −12.8198 + 5.31013i −0.474157 + 0.196402i
\(732\) 0 0
\(733\) 7.22918 17.4528i 0.267016 0.644633i −0.732324 0.680956i \(-0.761564\pi\)
0.999340 + 0.0363227i \(0.0115644\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 68.7958i 2.53412i
\(738\) 0 0
\(739\) −2.37240 0.982682i −0.0872703 0.0361485i 0.338621 0.940923i \(-0.390039\pi\)
−0.425892 + 0.904774i \(0.640039\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 9.84906 9.84906i 0.361327 0.361327i −0.502974 0.864301i \(-0.667761\pi\)
0.864301 + 0.502974i \(0.167761\pi\)
\(744\) 0 0
\(745\) 12.4412 + 12.4412i 0.455810 + 0.455810i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0.634067 1.53077i 0.0231683 0.0559333i
\(750\) 0 0
\(751\) 14.4324 0.526644 0.263322 0.964708i \(-0.415182\pi\)
0.263322 + 0.964708i \(0.415182\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −34.7736 14.4037i −1.26554 0.524205i
\(756\) 0 0
\(757\) −12.5839 30.3803i −0.457371 1.10419i −0.969458 0.245257i \(-0.921128\pi\)
0.512088 0.858933i \(-0.328872\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 10.8012 + 10.8012i 0.391543 + 0.391543i 0.875237 0.483694i \(-0.160705\pi\)
−0.483694 + 0.875237i \(0.660705\pi\)
\(762\) 0 0
\(763\) 3.06956 + 7.41057i 0.111125 + 0.268281i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 16.6126 0.599848
\(768\) 0 0
\(769\) −31.6614 −1.14174 −0.570869 0.821041i \(-0.693394\pi\)
−0.570869 + 0.821041i \(0.693394\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 7.73399 + 18.6715i 0.278172 + 0.671567i 0.999785 0.0207297i \(-0.00659894\pi\)
−0.721613 + 0.692297i \(0.756599\pi\)
\(774\) 0 0
\(775\) −3.03958 3.03958i −0.109185 0.109185i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −9.50234 22.9407i −0.340457 0.821935i
\(780\) 0 0
\(781\) 51.4183 + 21.2982i 1.83989 + 0.762108i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −5.89833 −0.210520
\(786\) 0 0
\(787\) −7.03017 + 16.9723i −0.250598 + 0.604998i −0.998253 0.0590900i \(-0.981180\pi\)
0.747654 + 0.664088i \(0.231180\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −5.27363 5.27363i −0.187509 0.187509i
\(792\) 0 0
\(793\) −12.3766 + 12.3766i −0.439505 + 0.439505i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −43.7568 18.1246i −1.54994 0.642008i −0.566638 0.823967i \(-0.691756\pi\)
−0.983306 + 0.181959i \(0.941756\pi\)
\(798\) 0 0
\(799\) 34.6588i 1.22614i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −30.2136 + 72.9421i −1.06621 + 2.57407i
\(804\) 0 0
\(805\) −3.14348 + 1.30207i −0.110793 +